APPROXIMATION IN NON-ASPLUND SPACES

R. FRY

Abstract

Results on the uniform approximation of continuous functions by C^{k}-smooth functions on the boundary of certain convex subsets in Banach spaces which are nonAsplund are given.

1. Introduction. The uniform approximation of continuous functions by C^{k}-smooth maps on Banach spaces which admit C^{k}-smooth bump functions (C^{k}-smooth real-valued functions with bounded, nonempty support) has received much attention over the years, see, e.g., [2]. Corresponding results in non-Asplund spaces has been less common, although related work can be traced back to the seminal papers [4] and [1], while more recently, the behavior of smooth functions on non-Asplund spaces and their 'harmonic' behavior has been considered in [2, Theorem III.1.3 and Proposition III.1.7], and results in a similar vein are in [3].

A simple yet important observation is that if one is able to uniformly approximate arbitrary continuous functions on an open set G in a Banach space X via maps C^{1}-smooth on G, then by approximating a suitable continuous bump function on G with a C^{1}-smooth map on G subsequently composed with an appropriate smooth bump function on \mathbf{R}, one can construct a C^{1}-smooth bump function on X. This in turn implies that X is Asplund. Hence, for non-Asplund spaces X, it is not possible to uniformly approximate arbitrary continuous maps on open sets by functions C^{1}-smooth on X. This is in stark contrast to the situation for many Banach spaces which admit C^{1}-smooth bump functions such as reflexive spaces or, more generally, weakly compactly generated Asplund spaces.

It follows that, for non-Asplund spaces, approximation theorems are much more constrained. Nevertheless, we obtain some interesting

[^0]
[^0]: 1991 AMS Mathematics Subject Classification. Primary 46B20.
 Key words and phrases. Smooth approximation, Asplund space.
 Research supported by an NSERC grant (Canada).
 Received by the editors on September 12, 2001, and in revised form on August 7, 2002.

