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SYMMETRIC DIOPHANTINE EQUATIONS

AJAI CHOUDHRY

ABSTRACT. In this paper we use certain properties of ra-
tional binary forms to solve several diophantine equations of
the type f(x, y) = f(u, v). If on applying the nonsingular lin-
ear transformation T defined by x = αu + βv, y = γu + δv,
the binary form φ(x, y) becomes a scalar multiple of the form
φ(u, v), we call φ(x, y) an eigenform of the linear transforma-
tion T . If f(x, y) = L(x, y)φ(x, y) where φ(x, y) is an eigen-
form of the linear transformation T and L(x, y) is not an eigen-
form of T , the diophantine equation f(x, y) = f(u, v) reduces,
on making the substitution x = m(αu+βv), y = m(γu+ δv),
to a linear equation in the variables u and v while m is an ar-
bitrary parameter. The solution of this linear equation read-
ily yields a parametric solution of the original diophantine
equation. We first use eigenforms to obtain parametric solu-
tions of several general types of diophantine equations such
as L1(x, y)Qr

1(x, y)Qs
2(x, y) = L1(u, v)Qr

1(u, v)Qs
2(u, v) and

{Π5
i=1Li(x, y, z)}Qr(x, y, z) = {Π5

i=1Li(u, v, w)}Qr(u, v, w)
where Ls and Qs denote linear and quadratic forms and r
and s are arbitrary integers, and then we obtain paramet-
ric solutions of several specific diophantine equations such as
the equation f(x, y) = f(u, v) where f(x, y) = xn + xn−1y +
· · · + yn, n being an arbitrary odd integer and the equation
x7 + y7 + 625z7 = u7 + v7 + 625w7.

1. Introduction. In this paper we use certain properties of binary
forms to solve several symmetric diophantine equations of the type

(1.1) f(x, y) = f(u, v).

We will use Ls, Qs and Cs to denote linear, quadratic and cubic forms,
respectively. All the forms considered in this paper will be assumed to
be defined over the field Q of rational numbers. Further, reducibility
of a form means reducibility over Q.
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