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EXPLICIT ESTIMATES FOR
THE RIEMANN ZETA FUNCTION

YUANYOU F. CHENG AND SIDNEY W. GRAHAM

ABSTRACT. We apply van der Corput’s method of expo-
nential sums to obtain explicit upper bounds for the Riemann
zeta function on the line σ = 1/2. For example, we prove that

if t ≥ e, then |ζ(1/2 + it)| ≤ 3t1/6 log t. These results will be
used in an application on primes to short intervals [4].

1. Introduction. It is well known that the distribution of prime
numbers is related to the study of the Riemann zeta-function. For
σ > 1, the Riemann zeta-function is defined to be the following infinite
sum

ζ(s) =
∞∑

n=1

n−s,

where s = σ + it with real variables σ and t.

This definition can be extended to the whole complex plane except
at s = 1. The following definitions for σ > 0 and s �= 1 can be
obtained respectively by virtue of the partial and the Euler-MacLaurin
summation formulae.

ζ(s) =
s

s − 1
− s

∫ ∞

1

u − [u]
us+1

du,

and
ζ(s) =

1
s

+
1
2
− s

∫ ∞

1

u − [u] − 1/2
us+1

du.

For reference, one may see [1, 8, 13, 14]. The following formula

∑
a<n≤b

f(n) =
∫ b

a

f(x) dx −
∫ b

a

f(x) d

(
x − [x] − 1

2

)
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