PLANE CURVES WITH MANY POINTS OVER FINITE FIELDS

MATTHEW L. CARLIN AND JOSÉ FELIPE VOLOCH

1. Introduction. The purpose of this paper is to construct plane curves over finite fields which meet the upper bound of [4, Theorem 0.1], recalled below, for the number of their rational points. We also prove an irreducibility criterion for plane curves.

The upper bound of [4, Theorem 0.1] is the first inequality of the following Theorem in the special case of irreducible curves.

Theorem 1. Let C be a, possibly reducible, plane algebraic curve defined over \mathbf{F}_p , p prime, of degree d < p. Suppose that C does not have a linear component defined over \mathbf{F}_p . Then $\#C(\mathbf{F}_p) \leq d(d+p-1)/2$. If $\#C(\mathbf{F}_p) \geq d(d+p-1)/2 - (d-1)$, then C is absolutely irreducible.

Proof. Without loss of generality, we can assume C is reduced, for the conditions are only strengthened in this case. Let C_1, \ldots, C_m be the components of C over \mathbf{F}_p and let d_i be the degree of C_i . By hypothesis $d_i > 1$ for all i. If C_i is absolutely irreducible, then by [4, Theorem 0.1], $\#C_i(\mathbf{F}_p) \le d_i(d_i + p - 1)/2$, whereas if C_i is not absolutely irreducible, then $\#C_i(\mathbf{F}_p) \le d_i^2/4$ as follows from the proof of Lemma 3.3 of [2]. As $d_i^2/4 < d_i(d_i + p - 1)/2$, we also get the first bound when C_i is not absolutely irreducible. Now

$$\#C(\mathbf{F}_p) \le \sum \#C_i(\mathbf{F}_p) \le \sum d_i(d_i + p - 1)/2.$$

From $\sum d_i = d$ we get that

$$\sum_{i < j} d_i (d_i + p - 1)/2 = d(d + p - 1)/2 - \sum_{i < j} d_i d_j.$$

This, combined with the preceding inequality, gives the first statement of the theorem. To get the second statement, consider the case

Received by the editors on April $\overline{23}$, 2002, and in revised form on October 15, 2002.