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GENERALIZATIONS AND REFINEMENTS OF
HERMITE-HADAMARD’S INEQUALITY

FENG QI, ZONG-LI WEI AND QIAO YANG

ABSTRACT. In this article, with the help of the concept
of the harmonic sequence of polynomials, the well known
Hermite-Hadamard’s inequality for convex functions is gen-
eralized to cases with bounded derivatives of nth order, in-
cluding the so-called n-convex functions, from which Hermite-
Hadamard’s inequality is extended and refined.

1. Introduction. Let f(x) be a convex function on the closed
interval [a, b], the well known Hermite-Hadamard’s inequality [6] can
be expressed as:
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It is well known that Hermite-Hadamard’s inequality is an important
cornerstone in mathematical analysis and optimization. There is a
growing literature considering its refinements and interpolations now.

A function f(x) is said to be r-convex on [a, b] with r ≥ 2 if and only
if f (r)(x) exists and f (r)(x) ≥ 0.

In terms of a trapezoidal formula and a midpoint formula for a real
function f(x) defined and integrable on [a, b], using the first and second
Euler-Maclaurin summation formulas, inequality (1) was generalized
for (2r)-convex functions on [a, b] with r ≥ 1 in [2].

In this paper, for our own convenience, we adopt the following
notation

(2) Sn =
f (n−1)(b) − f (n−1)(a)

b− a
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