GENERALIZATIONS AND REFINEMENTS OF HERMITE-HADAMARD'S INEQUALITY

FENG QI, ZONG-LI WEI AND QIAO YANG

ABSTRACT. In this article, with the help of the concept of the harmonic sequence of polynomials, the well known Hermite-Hadamard's inequality for convex functions is generalized to cases with bounded derivatives of nth order, including the so-called n-convex functions, from which HermiteHadamard's inequality is extended and refined.

1. Introduction. Let $f(x)$ be a convex function on the closed interval $[a, b]$, the well known Hermite-Hadamard's inequality [6] can be expressed as:
(1) $0 \leq \int_{a}^{b} f(t) d t-(b-a) f\left(\frac{a+b}{2}\right) \leq(b-a) \frac{f(a)+f(b)}{2}-\int_{a}^{b} f(t) d t$.

It is well known that Hermite-Hadamard's inequality is an important cornerstone in mathematical analysis and optimization. There is a growing literature considering its refinements and interpolations now.

A function $f(x)$ is said to be r-convex on $[a, b]$ with $r \geq 2$ if and only if $f^{(r)}(x)$ exists and $f^{(r)}(x) \geq 0$.

In terms of a trapezoidal formula and a midpoint formula for a real function $f(x)$ defined and integrable on $[a, b]$, using the first and second Euler-Maclaurin summation formulas, inequality (1) was generalized for $(2 r)$-convex functions on $[a, b]$ with $r \geq 1$ in [2].

In this paper, for our own convenience, we adopt the following notation

$$
\begin{equation*}
S_{n}=\frac{f^{(n-1)}(b)-f^{(n-1)}(a)}{b-a} \tag{2}
\end{equation*}
$$

2000 AMS Mathematics Subject Classification. Primary 26D10, 41A55.
Key words and phrases. Harmonic sequence of polynomials, Hermite-Hadamard's inequality, Appell condition, n-convex function, bounded derivative.

The first author was supported in part by NSF grant \#10001016 of China, SF for the Prominent Youth of Henan Province grant \#0112000200, SF of Henan Innovation Talents at Universities, NSF of Henan Province grant \#004051800, SF for Pure Research of Natural Science of the Education Department of Henan Province grant \#1999110004, and Doctor Fund of Jiaozuo Institute of Technology, China.

