DISTRIBUTION OF MINIMAL VARIETIES IN SPHERES IN TERMS OF THE COORDINATE FUNCTIONS

OSCAR PERDOMO

Abstract

Let M be a compact k-dimensional Riemannian manifold minimally immersed in the unit n-dimensional sphere S^{n}. It is easy to show that for any $p \in S^{n}$ the boundary of the geodesic ball in S^{n} with radius $\pi / 2$ and center at p (in this case this boundary is an equator) must intercept the manifold M. When the codimension is 1 , i.e., $k=n-1$, it is known that the Ricci curvature is not greater than 1. We will prove that if the Ricci curvature is not greater than $1-\alpha^{2} /(n-2)$, then the boundary of every geodesic ball with radius $\cot ^{-1}(\alpha)$ must intercept the manifold M. We give examples of manifolds for which the radius $\cot ^{-1}(\alpha)$ is optimal. Next, for any codimension, i.e., for any $M^{k} \subset S^{n}$, we find a number r_{1} that depends only on n such that for any collection of $n+1$ points $\left\{p_{i}\right\}_{i=1}^{n+1}$ in S^{n} that constitutes an orthonormal basis of \mathbf{R}^{n+1}, the union of the boundaries of the geodesic balls with radius r_{1} and center $p_{i}, i=1,2, \ldots, n+1$, must intercept the manifold M.

1. Introduction and preliminaries. Let M be a compact, oriented minimal hypersurface immersed in the n-dimensional unit sphere S^{n}. Let ν be a unit normal vector field along M. For any tangent vector $v \in T_{m} M, m \in M$, the shape operator A is given by $A(v)=-\bar{D}_{v} \nu$ where \bar{D} denotes the Levi Civita connection in \mathbf{R}^{n+1}. With the same notation, for any tangent vector field W, the Levi Civita connection on M is given by $D_{v} W=\left(\bar{D}_{v} W\right)^{T}$ where ()T denotes the orthogonal projection from \mathbf{R}^{n+1} to $T_{m} M$. For a function $f: M \rightarrow \mathbf{R}$, ∇f will denote the gradient of f. For any pair of vectors $v, w \in T_{m} M$ the Hessian of f is given by $H(f)(v, w)=\left\langle D_{v} \nabla f, w\right\rangle$, where \langle, denotes the inner product in \mathbf{R}^{n+1}. The Laplacian of f is given by $\Delta(f)=\sum_{i=1}^{n-1} H(f)\left(v_{i}, v_{i}\right)$ where $\left\{v_{i}\right\}_{i=1}^{n-1}$ is an orthonormal basis of $T_{m} M$.

For a given $w \in \mathbf{R}^{n+1}$, let us define the functions $l_{w}: M \rightarrow \mathbf{R}$ and $f_{w}: M \rightarrow \mathbf{R}$ by $l_{w}(m)=\langle m, w\rangle$ and $f_{w}(m)=\langle\nu(m), w\rangle$. Clearly

Received by the editors on July 18, 2001.

