ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 35, Number 1, 2005

DISTRIBUTION OF MINIMAL VARIETIES IN SPHERES IN TERMS OF THE COORDINATE FUNCTIONS

OSCAR PERDOMO

ABSTRACT. Let M be a compact k-dimensional Riemannian manifold minimally immersed in the unit n-dimensional sphere S^n . It is easy to show that for any $p \in S^n$ the boundary of the geodesic ball in S^n with radius $\pi/2$ and center at p (in this case this boundary is an equator) must intercept the manifold M. When the codimension is 1, i.e., k = n - 1, it is known that the Ricci curvature is not greater than $1 - \alpha^2/(n-2)$, then the boundary of every geodesic ball with radius $\cot^{-1}(\alpha)$ must intercept the manifold M. We give examples of manifolds for which the radius $\cot^{-1}(\alpha)$ is optimal. Next, for any codimension, i.e., for any $M^k \subset S^n$, we find a number r_1 that depends only on n such that for any collection of n + 1 points $\{p_i\}_{i=1}^{n+1}$ in S^n that constitutes an orthonormal basis of \mathbb{R}^{n+1} , the union of the boundaries of the geodesic balls with radius r_1 and center p_i , $i = 1, 2, \ldots, n + 1$, must intercept the manifold M.

1. Introduction and preliminaries. Let M be a compact, oriented minimal hypersurface immersed in the *n*-dimensional unit sphere S^n . Let ν be a unit normal vector field along M. For any tangent vector $v \in T_m M$, $m \in M$, the shape operator A is given by $A(v) = -\overline{D}_v \nu$ where \overline{D} denotes the Levi Civita connection in \mathbb{R}^{n+1} . With the same notation, for any tangent vector field W, the Levi Civita connection on M is given by $D_v W = (\overline{D}_v W)^T$ where $()^T$ denotes the orthogonal projection from \mathbb{R}^{n+1} to $T_m M$. For a function $f: M \to \mathbb{R}$, ∇f will denote the gradient of f. For any pair of vectors $v, w \in T_m M$ the Hessian of f is given by $H(f)(v, w) = \langle D_v \nabla f, w \rangle$, where $\langle \rangle$, \rangle denotes the inner product in \mathbb{R}^{n+1} . The Laplacian of f is given by $\Delta(f) = \sum_{i=1}^{n-1} H(f)(v_i, v_i)$ where $\{v_i\}_{i=1}^{n-1}$ is an orthonormal basis of $T_m M$.

For a given $w \in \mathbf{R}^{n+1}$, let us define the functions $l_w : M \to \mathbf{R}$ and $f_w : M \to \mathbf{R}$ by $l_w(m) = \langle m, w \rangle$ and $f_w(m) = \langle \nu(m), w \rangle$. Clearly

Received by the editors on July 18, 2001.

Copyright ©2005 Rocky Mountain Mathematics Consortium