EFFICIENCY FOR SELF SEMI-DIRECT PRODUCTS OF THE FREE ABELIAN MONOID ON TWO GENERATORS

Abstract

A. SINAN ÇEVIK

ABSTRACT. Let A and K both be copies of the free abelian monoid on two generators. For any connecting monoid homomorphism $\theta: A \rightarrow$ End (K), let $D=K \rtimes_{\theta} A$ be the corresponding monoid semi-direct product. We give necessary and sufficient conditions for the efficiency of a standard presentation for D in terms of the matrix representation for θ. Let p be a prime or 0 . In [4], necessary and sufficient conditions were given for the standard presentation of the semi-direct product of any two monoids to be p-Cockcroft. We use that result to give more explicit conditions in the special case here.

1. Introduction. Let $\mathcal{P}=[X ; \mathbf{r}]$ be a monoid presentation where a typical element $R \in \mathbf{r}$ has the form $R_{+}=R_{-}$. Here R_{+}, R_{-}are words on X, that is, elements of the free monoid X^{*} on X. The monoid defined by $[X ; \mathbf{r}]$ is the quotient of X^{*} by the smallest congruence generated by \mathbf{r}.

We have a (Squier) graph $\Gamma=\Gamma(X ; \mathbf{r})$ associated with $[X ; \mathbf{r}]$, where the vertices are the elements of X^{*} and the edges are the 4-tuples $e=(U, R, \varepsilon, V)$ where $U, V \in X^{*}, R \in \mathbf{r}$ and $\varepsilon= \pm 1$. The initial, terminal and inversion functions for an edge e as given above are defined by $\iota(e)=U R_{\varepsilon} V, \tau(e)=U R_{-\varepsilon} V$ and $e^{-1}=(U, R,-\varepsilon, V)$. There is a two-sided action of X^{*} on Γ as follows. If $W, \bar{W} \in X^{*}$ then, for any vertex V of $\Gamma, W \cdot V \cdot \bar{W}=W V \bar{W}$ (product in X^{*}) and, for any edge $e=(U, R, \varepsilon, V)$ of Γ, W.e. $\bar{W}=(W U, R, \varepsilon, V \bar{W})$. This action can be extended to the paths in Γ.

Two paths π and π^{\prime} in a 2-complex are equivalent if there is a finite sequence of paths $\pi=\pi_{0}, \pi_{1}, \cdots, \pi_{m}=\pi^{\prime}$ where for $1 \leq i \leq m$ the path π_{i} is obtained from π_{i-1} either by inserting or deleting a pair $e e^{-1}$ of inverse edges or else by inserting or deleting a defining path for one of

[^0]
[^0]: 1991 AMS Mathematics Subject Classification. Primary 20M05, Secondary 20M50, 20M15, 20M99.

 Key words and phrases. Efficiency, p-Cockcroft property, monoid presentations, trivializer set.

