ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 35, Number 2, 2005

MULTILINEAR TRIF d-MAPPINGS IN BANACH MODULES OVER A C*-ALGEBRA

CHUN-GIL PARK

ABSTRACT. We define a multilinear Trif d-mapping, and prove the stability of multilinear Trif d-functional equations in Banach modules over a unital C^* -algebra.

1. Introduction. Let E_1 and E_2 be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Consider $f: E_1 \to E_2$ to be a mapping such that f(tx) is continuous in $t \in \mathbf{R}$ for each fixed $x \in E_1$. Assume that there exist constants $\varepsilon \geq 0$ and $p \in [0, 1)$ such that

$$||f(x+y) - f(x) - f(y)|| \le \varepsilon(||x||^p + ||y||^p)$$

for all $x, y \in E_1$. Rassias [4] showed that there exists a unique **R**-linear mapping $T: E_1 \to E_2$ such that

$$\|f(x) - T(x)\| \le \frac{2\varepsilon}{2 - 2^p} \, ||x||^p$$

for all $x \in E_1$.

Recently, Trif [6, Theorem 2.1] proved that, for vector spaces V and W, a mapping $f: V \to W$ with f(0) = 0 satisfies the functional equation

(A)
$$n_{n-2}C_{k-2}f\left(\frac{x_1+\dots+x_n}{n}\right) + {}_{n-2}C_{k-1}\sum_{l=1}^n f(x_l)$$

= $k\sum_{1 \le l_1 < \dots < l_k \le n} f\left(\frac{x_{l_1}+\dots+x_{l_k}}{k}\right)$

Copyright ©2005 Rocky Mountain Mathematics Consortium

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 47B48, 39B72, 46L05. Key words and phrases. Banach module over C^* -algebra, stability, unitary grup, multilinear Trif *d*-functional equation. This work was supported by Korea Research Foundation Grant KRF-2002-041-

C00014.

Received by the editors on March 21, 2002, and in revised form on October 29, 2002.