BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 35, Number 2, 2005

APPROXIMATION OF SOBOLEV-TYPE CLASSES WITH QUASI-SEMINORMS

Z. DITZIAN, V.N. KONOVALOV AND D. LEVIATAN

ABSTRACT. Since the Sobolev set W_p^r , 0 , ingeneral is not contained in L_q , $0 < q \le \infty$, we limit ourselves to the set $W_p^r \cap L_\infty$, 0 . We prove that the Kolmogorov*n* $-width of the latter set in <math>L_q$, 0 < q < 1 is asymptotically 1, that is, the set cannot be approximated by n-dimensional linear manifolds in the L_q -norm. We then describe a related set, the width of which is asymptotically n^{-r}

1. Introduction and function classes. Very little is known about the exact order of any width of nontrivial classes of functions in the L_q -metric for 0 < q < 1. Recall that, for $1 \leq p, q \leq \infty$, the orders of most widths of the classical Sobolev classes W_p^r in L_q are well known. In contrast, for 0 , the behavior of any of the widths of theseclasses in L_q , $0 < q \leq \infty$, are not known. In general, the class W_p^r , $0 , is not contained in <math>L_q$, but even if we overcome this difficulty by taking, say, the smaller set $W_p^r \cap L_\infty$, 0 , we will showthat it cannot be approximated well in L_q for any $0 < q \leq \infty$. We remind the reader that, for the approximation of $f \in L_p$, 0 ,by polynomials and by splines with either equidistant knots or knots on the Chebyshev partition, there are known Jackson-type estimates involving the moduli of smoothness of f in the L_p -quasi-norm, see, e.g., [1]. However, there are no simple relations between the moduli of smoothness and the derivatives of f, if they exist. Moreover, the moduli of smoothness are not equivalent to K-functionals which are identically zero, see, e.g., [3, Theorem 2.1]. Thus, we introduce new classes V_p^r , 0 , which we feel are the proper replacement of theSobolev classes for 0 , and we obtain the exact orders of theirKolmogorov, linear, and pseudo-dimensional widths in L_q , 0 < q < 1. We also obtain for these classes exact orders of best approximation in L_q , 0 < q < 1, by rational functions and free-knot splines.

¹⁹⁹¹ AMS Mathematics Subject Classification. Primary 41A46. Key words and phrases. n-widths in L_q , 0 < q < 1, Sobolev type classes. Received by the editors on March 3, 2003, and in revised form on September 17, 2003

Copyright ©2005 Rocky Mountain Mathematics Consortium