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MATRICES DEFINING
GORENSTEIN LATTICE IDEALS

HOSSEIN SABZROU AND FARHAD RAHMATI

ABSTRACT. We study a class of integer matrices that
define Gorenstein lattice ideals. We call them Gorenstein
matrices. We give a combinatorial characterization of those
which are of size (n + 1) × n and we relate them to the
Frobenius problem in integer programming theory. We also
give a necessary and sufficient condition for Gorensteinness
of generic matrices which are defined in integer programming
theory.

1. Introduction. Let S = k[x] := k[x1, . . . , xn] be a polynomial
ring over a fixed field k. A monomial xu1

1 · · ·xun
n in S is denoted by xu,

where u = (u1, . . . , un) ∈ Nn. A vector u ∈ Zn can be written uniquely
as u = u+ −u−, where u+ and u− are positive and negative parts of u,
respectively. Let B = (bij) be an integer n× d-matrix of rank d whose
columns are vectors b1, . . . , bd in Zn. For the lattice LB in Zn which
is spanned by the columns of B, the corresponding lattice ideal in S is
the binomial ideal

ILB
:= 〈xu+ − xu− | u ∈ LB〉.

The matrix B is called a defining matrix of ILB
. Such a matrix is of

course not unique, but one can see easily that it is unique up to action
of SLd(Z), that is, if B′ is a second integer n × d-matrix of rank d,
then ILB

= ILB′ if and only if for a unimodular matrix T ∈ SLd(Z),
we have B′ = BT .

The relationships between the matrix B and the lattice ideal ILB

have been studied by many authors [5, 7, 10, 15] and [16]. It is well
known that some numerical invariants and some algebraic properties
of the lattice ideal ILB

can be read off directly from the matrix B.
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