THE REPRESENTATIONS OF D^{1}

MANOUCHEHR MISAGHIAN

Abstract

In this paper we construct explicitly all irreducible representations of the norm one elements group in the quaternion division algebra over a local p-field where p is an odd prime number.

1. Introduction and notation. In this paper we will construct explicitly all irreducible representations of D^{1}, the norm one elements group of D, where D is the quaternion division algebra over a local p-field for an odd prime number p. Our motivation for finding representations of D^{1}, in addition to its own interest, is that they are needed to construct the representations of $U(2)$, the nonsplit unitary group in two variables, in relation to the reductive dual pair $(U(1), U(2))$ in the symplectic group $S p(4)$. Some authors have studied the representations of division algebras in general [1]. Here we will be using the method used by Manderscheid [10] to construct the representations of $S L(2)$, to parametrize explicitly the representations of D^{1}. This method was briefly outlined, without details or proofs in [11]. We provide here the details and the proofs, getting the explicit inducing data in [11]. Although influenced by [1], this data does not follow from [1].

This paper consists of three sections. The first section is devoted to the basic results about the structure of D^{1}, its normal subgroups and their characters. In the second section we find all representations of D^{1} whose dimensions are bigger than one. Finally in the last section after constructing all one-dimensional representations of D^{1} we state and prove Theorem 3.5 which formalizes all the results obtained in Sections 2 and 3.

Let F be a non-Archimedean local p-field where p is an odd prime. Let $O=O_{F}$ be the ring of integers of F, and let ϖ be a generator of the maximal ideal $P=P_{F}$ in $O=O_{F}$. Let $k=k_{F}$ denote the residual class field O / P, and let q be the cardinality of k.

[^0]
[^0]: Received by the editors on December 13, 2000, and in revised form on May 1, 2002.

