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COMPOSITION FOLLOWED BY DIFFERENTIATION
BETWEEN BERGMAN AND HARDY SPACES

R.A. HIBSCHWEILER AND N. PORTNOY

ABSTRACT. Let Φ be an analytic self-map of the disc,
and let Hp denote the Hardy space. The operator DCΦ is
defined for functions analytic in the disc by DCΦ(f) = (f◦Φ)′.
We show that compactness and boundedness of the map
DCΦ : Hp → Hq , p, q ≥ 1, are equivalent to the conditions
Φ′ ∈ Hq and ||Φ||∞ < 1. For α > −1 and p ≥ 1, Ap

α denotes
the weighted Bergman space. In the case 1 ≤ p ≤ q, DCΦ :
Ap

α → Aq
β

is bounded if and only if a related measure obeys

a Carleson-type condition. Compactness is characterized by
the analogous little-oh condition. For 1 ≤ q < p, Khinchine’s
inequality is used to show that boundedness and compactness
are equivalent to an integrability condition on a weighted
integral.

1. The Hardy space Hp, p ≥ 1, is the Banach space of functions
analytic in U = {z : |z| < 1} satisfying

‖f‖Hp = sup
0<r<1

{
1
2π

∫ 2π

0

|f(reiθ)|p dθ

}1/p

< ∞.

References for the Hardy spaces include [2] and [3].

Let Φ be a nonconstant self-map of U , and let CΦ(f) = f ◦ Φ for
functions f analytic in the disc. Many authors [1, 6, 7, 10] have
studied boundedness and compactness of CΦ on the Hardy spaces. It
is known [12] that if CΦ is compact on Hp for some p ≥ 1, then CΦ

is compact on all the Hardy spaces. Shapiro [11] characterized the
self-maps Φ for which CΦ is compact on H2.
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