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CURVES OF SMALL DEGREE ON CUBIC THREEFOLDS

JOE HARRIS, MIKE ROTH AND JASON STARR

ABSTRACT. In this article we consider the spaces Hd,g(X)
parametrizing smooth curves of degree d and genus g on a
smooth cubic threefold X ⊂ P4. For 1 ≤ d ≤ 5, we show that
each variety Hd,g(X) is irreducible of dimension 2d.

1. Introduction. Suppose that X ⊂ P4 is a smooth cubic
hypersurface in complex projective 4-space. In this article we consider
the space Hd,g(X) parametrizing smooth curves of degree d and genus
g on a smooth cubic threefold X ⊂ P4. For 1 ≤ d ≤ 5 we show that
each variety Hd,g(X) is irreducible of dimension 2d.

For the Fano scheme of lines F = H1,0(X), this is a classical result,
cf., [1]. We bootstrap from this case by residuation: in each case we
show that for a general point [C] ∈ Hd,g(X) there is a surface Σ ⊂ P4

which contains C and such that every irreducible component of the
residual to C in Σ∩X has degree e < d. In this way we inductively prove
that for 1 ≤ d ≤ 5 the space Hd,g(X) is irreducible, and in several cases
we also show smoothness. In a forthcoming paper [8], we use similar
methods to describe the Abel-Jacobi maps ud,g : Hd,g(X) → J(X) for
1 ≤ d ≤ 5.

1.1 Notation. All schemes in this paper will be schemes over C.
All absolute products will be understood to be fiber products over
Spec (C).

For a projective varietyX and a numerical polynomial P (t), HilbP (t)X

denotes the corresponding Hilbert scheme. For integers d, g, Hd,g(X) ⊂
Hilbdt+1−gX denotes the open subscheme parametrizing smooth, con-
nected curves of degree d and genus g.

2. Preliminaries. In this section we gather some preliminary facts
about deformation theory, residuation, and Abel-Jacobi maps.
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