BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 35, Number 3, 2005

CURVES OF SMALL DEGREE ON CUBIC THREEFOLDS

JOE HARRIS, MIKE ROTH AND JASON STARR

ABSTRACT. In this article we consider the spaces $\mathcal{H}^{d,g}(X)$ parametrizing smooth curves of degree d and genus g on a smooth cubic threefold $X \subset \mathbf{P}^4$. For $1 \leq d \leq 5$, we show that each variety $\mathcal{H}^{d,g}(X)$ is irreducible of dimension 2d.

Suppose that $X \subset \mathbf{P}^4$ is a smooth cubic Introduction. 1. hypersurface in complex projective 4-space. In this article we consider the space $\mathcal{H}^{d,g}(X)$ parametrizing smooth curves of degree d and genus g on a smooth cubic threefold $X \subset \mathbf{P}^4$. For $1 \leq d \leq 5$ we show that each variety $\mathcal{H}^{d,g}(X)$ is irreducible of dimension 2*d*.

For the Fano scheme of lines $F = \mathcal{H}^{1,0}(X)$, this is a classical result, cf., [1]. We bootstrap from this case by residuation: in each case we show that for a general point $[C] \in \mathcal{H}^{d,g}(X)$ there is a surface $\Sigma \subset \mathbf{P}^4$ which contains C and such that every irreducible component of the residual to C in $\Sigma \cap X$ has degree e < d. In this way we inductively prove that for $1 \le d \le 5$ the space $\mathcal{H}^{d,g}(X)$ is irreducible, and in several cases we also show smoothness. In a forthcoming paper [8], we use similar methods to describe the Abel-Jacobi maps $u_{d,q}: \mathcal{H}^{d,q}(X) \to J(X)$ for $1 \leq d \leq 5.$

1.1 Notation. All schemes in this paper will be schemes over **C**. All absolute products will be understood to be fiber products over $\operatorname{Spec}(\mathbf{C}).$

For a projective variety X and a numerical polynomial P(t), Hilb_{P(t)}X denotes the corresponding Hilbert scheme. For integers $d, g, \mathcal{H}^{d,g}(X) \subset$ $\operatorname{Hilb}_{dt+1-a} X$ denotes the open subscheme parametrizing smooth, connected curves of degree d and genus q.

2. Preliminaries. In this section we gather some preliminary facts about deformation theory, residuation, and Abel-Jacobi maps.

Received by the editors on January 24, 2002. The third author was partially supported by an NSF Graduate Research Fellowship and Sloan Dissertation Fellowship.

Copyright ©2005 Rocky Mountain Mathematics Consortium