THE PROJECTIVE AND INJECTIVE TENSOR PRODUCTS OF $L^{p}[0,1]$ AND X BEING GROTHENDIECK SPACES

QINGYING BU AND G. EMMANUELE

Abstract

Let X be a Banach space and $1<p, p^{\prime}<\infty$ such that $1 / p+1 / p^{\prime}=1$. Then $L^{p}[0,1] \hat{\otimes} X$, respectively $L^{p}[0,1] \check{\otimes} X$, the projective, respectively injective, tensor product of $L^{p}[0,1]$ and X, is a Grothendieck space if and only if X is a Grothendieck space and each continuous linear operator from $L^{p}[0,1]$, respectively $L^{p^{\prime}}[0,1]$, to X^{*}, respectively $X^{* *}$, is compact.

1. Introduction. In $[\mathbf{1}, \mathbf{4}, \mathbf{5}], \mathrm{Bu}$, Diestel, and Dowling gave a sequential representation of $L^{p}[0,1] \hat{\otimes} X$, the projective tensor product of $L^{p}[0,1]$ and X when $1<p<\infty$. By this sequential representation, they showed that $L^{p}[0,1] \hat{\otimes} X, 1<p<\infty$, has the Radon-Nikodym property (respectively the analytic Radon-Nikodym property, the near Radon-Nikodym property, contains no copy of c_{0}) if and only if X has the same property. Using this sequential representation, Bu in [2] showed that $L^{p}[0,1] \hat{\otimes} X, 1<p<\infty$, contains no copy of l_{1} if and only if X contains no copy of l_{1} and each continuous linear operator from $L^{p}[0,1]$ to X^{*} is compact, and he also in $[3]$ discussed all these geometric properties in $L^{p}[0,1] \otimes$, the injective tensor product of $L^{p}[0,1]$ and X when $1<p<\infty$.

In [9], Emmanuele showed that if X and Y are Grothendieck Banach spaces, one of which is reflexive, and if each continuous linear operator from X to Y^{*} is compact, then $X \hat{\otimes} Y$, the projective tensor product of X and Y, is a Grothendieck space. And he also in [10] showed that if $X \hat{\otimes} Y$ is a Grothendieck space and Y^{*} has the (b.c.a.p), then each continuous linear operator from X to Y^{*} is compact. As a special case of Emmanuele's results, we have that if X has the (b.c.a.p), then $L^{p}[0,1] \hat{\otimes} X, 1<p<\infty$, is a Grothendieck space if and only if X is a Grothendieck space and each continuous linear operator from $L^{p}[0,1]$

[^0]
[^0]: 2000 AMS Mathematics Subject Classification. Primary 46M05, 46B28, 46E40.
 Received by the editors on October 2, 2002, and in revised form on July 15, 2003.

