ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 35, Number 3, 2005

THE MARKOFF-HURWITZ EQUATIONS OVER NUMBER FIELDS

ARTHUR BARAGAR

ABSTRACT. Let R be an order in a number field K, and let $\mathcal{M}_{a,n}(R)$ be the set of R-integral solutions to the Markoff-Hurwitz equation $x_1^2 + \cdots + x_n^2 = ax_1 \cdots x_n$, where $a \in R$, $a \neq 0$, and $n \geq 3$. This set can be expressed as the orbit of a fundamental set of solutions $\mathcal{F}_{a,n}(R)$ under the action of a group of automorphisms $\mathcal{A}_{a,n}$. Hurwitz showed that $\mathcal{F}_{a,n}(\mathbf{Z})$ is always finite. Silverman showed that $\mathcal{F}_{a,3}(R)$ is often infinite if the group of units R^* in R is infinite. In this paper, we show that if R^* is infinite and K has a real imbedding, then $\mathcal{F}_{a,n}(R)$ is either empty or infinite. We also show that if K is totally complex and $n \geq 6$, then $\mathcal{F}_{a,n}(R)$ is infinite.

Introduction. The Diophantine equation

(1)
$$x_1^2 + x_2^2 + \dots + x_n^2 = ax_1x_2\cdots x_n$$

with a a nonzero integer and $n \ge 3$ is known as a Hurwitz or Markoff-Hurwitz equation. Such equations were first studied by Hurwitz [7] who thought of them as generalizations of the Markoff equation

(2)
$$x^2 + y^2 + z^2 = 3xyz,$$

which was first studied by Markoff [8]. The theory surrounding the Markoff equation is rich and quite extensive, but the property we are interested in here is the following: All integer solutions (x, y, z) with $0 < x \le y \le z$ can be generated from the *fundamental solution* (1, 1, 1) and the branching operations

$$(x, y, z) \underbrace{(x, z, 3xz - y)}_{(y, z, 3yz - x).}$$

Copyright ©2005 Rocky Mountain Mathematics Consortium

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 11D41, 11D72, 11G35. Received by the editors on July 22, 2002, and in revised form on September 5, 2002.