THE MARKOFF-HURWITZ EQUATIONS OVER NUMBER FIELDS

ARTHUR BARAGAR

Abstract

Let R be an order in a number field K, and let $\mathcal{M}_{a, n}(R)$ be the set of R-integral solutions to the MarkoffHurwitz equation $x_{1}^{2}+\cdots+x_{n}^{2}=a x_{1} \cdots x_{n}$, where $a \in R$, $a \neq 0$, and $n \geq 3$. This set can be expressed as the orbit of a fundamental set of solutions $\mathcal{F}_{a, n}(R)$ under the action of a group of automorphisms $\mathcal{A}_{a, n}$. Hurwitz showed that $\mathcal{F}_{a, n}(\mathbf{Z})$ is always finite. Silverman showed that $\mathcal{F}_{a, 3}(R)$ is often infinite if the group of units R^{*} in R is infinite. In this paper, we show that if R^{*} is infinite and K has a real imbedding, then $\mathcal{F}_{a, n}(R)$ is either empty or infinite. We also show that if K is totally complex and $n \geq 6$, then $\mathcal{F}_{a, n}(R)$ is infinite.

Introduction. The Diophantine equation

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=a x_{1} x_{2} \cdots x_{n} \tag{1}
\end{equation*}
$$

with a a nonzero integer and $n \geq 3$ is known as a Hurwitz or MarkoffHurwitz equation. Such equations were first studied by Hurwitz [7] who thought of them as generalizations of the Markoff equation

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=3 x y z \tag{2}
\end{equation*}
$$

which was first studied by Markoff [8]. The theory surrounding the Markoff equation is rich and quite extensive, but the property we are interested in here is the following: All integer solutions (x, y, z) with $0<x \leq y \leq z$ can be generated from the fundamental solution $(1,1,1)$ and the branching operations

[^0]
[^0]: 2000 AMS Mathematics Subject Classification. Primary 11D41, 11D72, 11G35.
 Received by the editors on July 22, 2002, and in revised form on September 5, 2002.

