FORMULAS FOR POWERS OF THE HYPERBOLIC TANGENT WITH AN APPLICATION TO HIGHER-ORDER TANGENT NUMBERS

J.S. LOMONT

Abstract

It is shown that the function $\tanh ^{2 n+1}(x)$ is a linear combination of even-order derivatives of $\tanh (x)$, while the function $1-\tanh ^{2 n+2}(x)$ is a linear combination of odd-order derivatives of $\tanh (x)$. These results are then used to express higher-order tangent numbers (coefficients in the Maclaurin series for $\left.\tanh ^{n}(x)\right)$ as linear combinations of the ordinary tangent numbers (coefficients in the Maclaurin series for $\tanh (x))$.

1. Introduction. In a recently published book [2], the three sequences of polynomials $\left\{\delta_{n}\right\}_{0}^{\infty}\left[\mathbf{2}\right.$, Chapter 10], $\left\{A_{n}\right\}_{0}^{\infty},\left\{B_{n}\right\}_{0}^{\infty}[\mathbf{2}$, Chapters 13, 14] were introduced and studied. These sequences are defined by the following recurrences:

$$
\begin{equation*}
\delta_{n+2}(x)=x \delta_{n+1}(x)+n(n+1) \delta_{n}(x), \tag{1.1}
\end{equation*}
$$

where $\delta_{0}(x)=1, \delta_{1}(x)=x$,
(1.2) $A_{n+2}(z)=\left(z+2(2 n+3)^{2}\right) A_{n+1}(z)-4(n+1)^{2}(2 n+1)(2 n+3) A_{n}(z)$,
where $A_{0}(z)=1, A_{1}(z)=z+2$, and

$$
\begin{equation*}
B_{n+2}(z)=\left(z+8(n+2)^{2}\right) B_{n+1}(z)-4(n+1)(n+2)(2 n+3)^{2} B_{n}(z) \tag{1.3}
\end{equation*}
$$

where $B_{0}(z)=1, B_{1}(z)=z+8$. The δ_{n} 's are related to the A_{n} 's and B_{n} 's as follows:

$$
\begin{equation*}
\delta_{2 n+1}(x)=x A_{n}\left(x^{2}\right), \quad n=0,1,2, \ldots, \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{2 n+2}(x)=x^{2} B_{n}\left(x^{2}\right), \quad n=0,1,2, \ldots . \tag{1.5}
\end{equation*}
$$

Received by the editors on January 22, 2002, and in revised form on August 10, 2003.

