ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 35, Number 4, 2005

SELF-TRANSVERSAL SPACES AND THEIR DISCRETE SUBSPACES

I. JUHÁSZ, M.G. TKACHENKO, V.V. TKACHUK AND R.G. WILSON

ABSTRACT. A space X is called *self-transversal* if there is a bijection $\varphi : X \to X$ such that the family $\tau(X) \cup \varphi(\tau(X))$ forms a subbase of the discrete topology on X. We prove that, under CH, there exists a compact scattered space which is not self-transversal. It is shown that there exist compact self-transversal spaces of arbitrarily large cardinality with the Souslin property. We present examples of compact spaces which give a negative answer in ZFC to Problem 2 and 3 from [8] and a partial negative answer to Problem 1 of [8]. We also establish that it is independent of ZFC whether any metrizable space X is self-transversal if and only if w(X) = |X|. We show that any monotonically normal scattered space is selftransversal and that adding a single point to a self-transversal space can destroy self-transversality.

1. Introduction. Recall that two topologies τ and μ on the same set X are called *transversal* if $\tau \cup \mu$ is a subbase for the discrete topology on X. A natural way of exploring the properties of a given space (X, τ) is to study the interaction of its topology with its copies on the same set obtained by all possible bijections. If some of these copies are transversal to τ then the space (X, τ) is called self-transversal.

The study of transversal topologies was initiated in 1966 by Steiner who proved in [9] that no countable infinite set X admits a pair of Hausdorff transversal topologies whose intersection is the cofinite topology on X (such topologies are called T_2 -complementary). Later, intensive study of T_1 -complementary topologies was undertaken by

Copyright ©2005 Rocky Mountain Mathematics Consortium

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 54H11, 54C10, 22A05, 54D06, Secondary 54D25, 54C25.

Key words and phrases. Self-transversal space, scattered space, discrete subspace, transversal topology, bijection, spread. Research supported by Consejo Nacional de Ciencia y Tecnología (CONACYT)

Research supported by Consejo Nacional de Ciencia y Tecnología (CONACYT) de México, Grant 400200-5-28411-E.

Research of the first author supported by OTKA Grant no. 37758. Research of the third author supported by Consejo Nacional de Ciencia y

Tecnología (CONACYT) de México, Grant 010350.

Received by the editors on December 14, 2002, and in revised form on August 12, 2003.