ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 35, Number 4, 2005

A-COMPACTNESS AND MINIMAL SUBALGEBRAS OF C(X)

S.K. ACHARYYA AND D. DE

ABSTRACT. Let $\sum_{i}(X)$ be the set of all subalgebras of C(X) containing $C^*(X)$, where X is a Tychonoff space. Given $A(X) \equiv A \in \sum_{i}(X)$ there is associated a subset $v_A X$ of βX which is an A-analogue of the Hewitt real compactification vX of X. X is called A-compact if and only if $v_A X = X$. Redlin and Watson asked whether, for any real compact space X, there exists in some sense a minimal $A_m \in \sum_{i}(X)$ for which X becomes A_m -compact. Acharyya, Chattopadhyay and Ghosh answered this question in affirmative by defining a suitable preorder on $\sum_{i}(X)$, and they made the following conjecture that there does not exist any minimal subalgebra $A(\mathbf{N})$ of $C(\mathbf{N})$ containing $C^*(\mathbf{N})$, in the usual set inclusion sense for which \mathbf{N} is A-compact. In this paper we have shown that, given any real compact space X there does not exist any minimal member $A_m \in \sum_{i}(X)$, in the usual set inclusion sense for which X becomes A_m -compact and thereby proving the conjecture as a special case of it. From this result it has been further shown that for any $A(X) \neq C^*(X)$ in $\sum_{i}(X)$ there does not exist any minimal member $B(X) \in \sum_{i}(X)$ in the usual set inclusion sense for which sense for which $X = v_B X$.

1. Introduction. It is a remarkable fact in the theory of rings of continuous functions that the Stone-Čech compactification βX of a Tychonoff space X could be realized as the set of all maximal ideals of an arbitrary subalgebra A(X) of C(X) containing $C^*(X)$, equipped with hull kernel topology. Such subalgebras of C(X) were initiated and investigated in detail by Plank [7]. Let $\sum(X)$ be the family of all such subalgebras of C(X). Following Redlin and Watson [8], for any $A(X) \equiv A \in \sum(X)$, a maximal ideal M of A is called *real* provided that the quotient field A/M is isomorphic to the real field **R**, otherwise

Received by the editors on July 20, 2002.

Copyright ©2005 Rocky Mountain Mathematics Consortium

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 54X10, 58Y30, Secondary 55Z10.

Key words and phrases. Algebra of continuous functions, real compactification, Stone-Čech compactification, convex ring. This paper constitutes a portion of D. De's doctoral dissertation under the

This paper constitutes a portion of D. De's doctoral dissertation under the supervision of Prof. S.K. Acharyya. This research was supported by a CSIR fellowship.