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SYMPLECTIC GEOMETRY FOR
PAIRS OF SUBMANIFOLDS

ALAN S. MCRAE

ABSTRACT. Darboux’s classical theorem in symplectic
geometry is generalized to pairs of transversal submanifolds.

1. Introduction. A smooth manifold V imbued with a closed, non-
degenerate 2-form ω is called a symplectic manifold. The symplectic
form ω gives the manifold a geometric structure (signed area, instead
of length as in Riemannian geometry), and the closedness controls the
topology of V . Symplectic manifolds play an important role in clas-
sical mechanics, geometrical optics, representation theory, and Kähler
geometry. A variety of fundamental results in symplectic geometry
provide for local characterizations of various geometric objects: sym-
plectic manifolds, submanifolds, foliations, etc., the most fundamental
and elementary of which is Darboux’s theorem:

Theorem 1 (Darboux’s theorem). Every point of a symplectic
manifold has local coordinates (xi, yi), i = 1, . . . , n, so that

ω = dx1 ∧ dy1 + · · · + dxn ∧ dyn.

We can conclude that, in stark contrast to Riemannian geometry,
there are no local invariants other than dimension and that this dimen-
sion must be even. Another perspective on Darboux’s theorem is this:
Any two symplectic forms induce the same form on a point (the zero
form) and so the intrinsic symplectic geometry of a point completely
determines the symplectic geometry nearby.

In this paper we examine the extent to which the interior geometry
of a pair of submanifolds determines its exterior geometry, a special
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