GEOMETRY OF JUMP SYSTEMS

VADIM LYUBASHEVSKY, CHAD NEWELL AND VADIM PONOMARENKO

Abstract

A jump system is a set of lattice points satisfying a certain "two-step" axiom. We present a variety of results concerning the geometry of these objects, including a characterization of two-dimensional jump systems, necessary (though not sufficient) properties of higher-dimensional jump systems, and a characterization of constant-sum jump systems.

1. Introduction. A jump system is a set of lattice points that satisfy a simple "two-step" axiom. They were introduced by Bouchet and Cunningham [1] in order to simultaneously generalize delta-matroids (hence matroids) and degree sequences of subgraphs.

Fix a finite set S. We consider elements of \mathbf{Z}^{S} together with the 1norm $|x|=\sum_{i \in S}\left|x_{i}\right|$ and the corresponding distance $d(x, y)=|x-y|$.

For elements $x, y \in \mathbf{Z}^{S}$, we say $z \in \mathbf{Z}^{S}$ is a step from x toward (in the direction off) y if $|z-x|=1$ and $|z-y|<|x-y|$. Note that if z is a step from x toward y, then $z=x \pm e_{i}$ for some standard unit vector e_{i}. For notational convenience, we will use $x \xrightarrow{y} z$ to denote a step from x to z in the direction of y.

Given a collection of points $J \subseteq \mathbf{Z}^{S}$, we say that J is a jump system if it satisfies Axiom 1.1.

Axiom 1.1 (2-step axiom). If $x, y \in J$ and $x \xrightarrow{y} z$ with $z \notin J$, then there exists $z^{\prime} \in J$ with $z \xrightarrow{y} z^{\prime}$.

The following well-known operations all preserve Axiom 1.1, see [1, $\mathbf{3}, \mathbf{4}, \mathbf{5}]$. They allow us to simplify many of the later proofs concerning various properties of jump systems.

[^0]
[^0]: Key words and phrases. Jump system.
 Supported in part by NSF grant 0097366.
 Received by the editors on November 20, 2002, and in revised form on September 2, 2003.

