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GEOMETRY OF JUMP SYSTEMS

VADIM LYUBASHEVSKY, CHAD NEWELL

AND VADIM PONOMARENKO

ABSTRACT. A jump system is a set of lattice points sat-
isfying a certain “two-step” axiom. We present a variety of
results concerning the geometry of these objects, including
a characterization of two-dimensional jump systems, neces-
sary (though not sufficient) properties of higher-dimensional
jump systems, and a characterization of constant-sum jump
systems.

1. Introduction. A jump system is a set of lattice points that sat-
isfy a simple “two-step” axiom. They were introduced by Bouchet and
Cunningham [1] in order to simultaneously generalize delta-matroids
(hence matroids) and degree sequences of subgraphs.

Fix a finite set S. We consider elements of ZS together with the 1-
norm |x| =

∑
i∈S |xi| and the corresponding distance d(x, y) = |x− y|.

For elements x, y ∈ ZS , we say z ∈ ZS is a step from x toward (in the
direction of) y if |z − x| = 1 and |z − y| < |x − y|. Note that if z is a
step from x toward y, then z = x± ei for some standard unit vector ei.
For notational convenience, we will use x

y→ z to denote a step from x
to z in the direction of y.

Given a collection of points J ⊆ ZS , we say that J is a jump system
if it satisfies Axiom 1.1.

Axiom 1.1 (2-step axiom). If x, y ∈ J and x
y→ z with z /∈ J , then

there exists z′ ∈ J with z
y→ z′.

The following well-known operations all preserve Axiom 1.1, see [1,
3, 4, 5]. They allow us to simplify many of the later proofs concerning
various properties of jump systems.
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