WARING'S PROBLEM FOR LINEAR POLYNOMIALS AND LAURENT POLYNOMIALS

DONG-IL KIM

Abstract

Waring's problem is about representing any function in a class of functions as a sum of k th powers of nonconstant functions in the same class. We allow complex coefficients in these kind of problems. Consider $\sum_{i=1}^{p_{1}} f_{i}(z)^{k}=z$ and $\sum_{i=1}^{p_{2}} f_{i}(z)^{k}=1$. Suppose that $k \geq 2$. Let p_{1} and p_{2} be the smallest numbers of functions that give the above identities. W.K. Hayman obtained lower bounds of p_{1} and p_{2} for polynomials, entire functions, rational functions and meromorphic functions. First, we consider Waring's problem for linear polynomials and get $p_{1}=k$ and $p_{2}=k+1$. Then, we study Waring's problem for Laurent polynomials and obtain lower bounds of p_{1} and p_{2}.

1. Introduction.

1.1. Waring's problem. Waring's problem deals with representing any function in a class of functions as a sum of k th powers of nonconstant functions in the same class. We allow complex coefficients in these problems.

Let k and n be natural numbers. Consider the equation of the form

$$
\begin{equation*}
\sum_{i=1}^{n} f_{i}(z)^{k}=Q(z) \tag{1.1.1}
\end{equation*}
$$

where $f_{1}, f_{2}, \ldots, f_{n}$ and Q are nonconstant polynomials with complex coefficients. Suppose that

$$
\begin{equation*}
f_{1}(z)^{k}+f_{2}(z)^{k}+\cdots+f_{n}(z)^{k}=z \tag{1.1.2}
\end{equation*}
$$

Then we obtain

$$
\begin{equation*}
f_{1}(Q(z))^{k}+f_{2}(Q(z))^{k}+\cdots+f_{n}(Q(z))^{k}=Q(z) \tag{1.1.3}
\end{equation*}
$$

Received by the editors on February 19, 2003, and in revised form on May 1, 2003.

