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SUBSPACES WITH NONINVERTIBLE
ELEMENTS IN Re C(X)

M.H. SHIRDARREH HAGHIGHI

ABSTRACT. Let X be a compact Hausdorff space, and let
M be a subspace of Re C(X) consisting only of noninvertible
elements. We show that there exist closed sets Y ⊂ X such
that each element of M has a zero in Y and no closed subset
of Y has this property; furthermore, such a Y is a singleton,
or has no isolated points. If M has finite codimension n and
Y is not a singleton, then Y is a union of at most n nontrivial
connected components. We also show that positive functionals
exist in M⊥.

1. Introduction. Throughout this paper we assume that X is
an arbitrary compact Hausdorff space. Denote by C(X), respectively
Re C(X), the space of all continuous complex, respectively real, func-
tions on X.

In this section we discuss the motivation and a brief history of
studying subspaces with noninvertible elements in C(X) and Re C(X).

Plainly, every ideal of C(X) or Re C(X) is a subspace consisting only
of noninvertible elements. Let us call a subspace M of C(X) or Re C(X)
a Z-subspace if M is consisting only of noninvertible elements. In other
words, M is a Z-subspace if for each f ∈ M there exists x ∈ X such
that f(x) = 0.

So, every subspace of an ideal in C(X) or Re C(X) is a Z-subspace. It
is easy to construct Z-subspaces in Re C[0, 1] which are not contained
in maximal ideals. For example, let M = {f : f(0) + f(1) = 0}. Each
f ∈ M has a zero in [0, 1], by the intermediate value theorem, but
clearly M is not contained in an ideal.

The situation for C(X) is completely different. Studying Z-subspaces
begins with the following famous result due to Gleason [2] and Kahane
and Zelazko [5]:
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