PARAMETRIC SOLUTIONS OF THE

 QUARTIC DIOPHANTINE EQUATION $f(x, y)=f(u, v)$AJAI CHOUDHRY

Abstract

There are very few quartic diophantine equations of the type $f(x, y)=f(u, v)$, where $f(x, y)=a x^{4}+$ $b x^{3} y+c x^{2} y^{2}+d x y^{3}+e y^{4}$ is a binary quartic form, for which parametric solutions have been obtained. In this paper we obtain parametric solutions of such quartic equations when the coefficients a, b, c, d, e satisfy certain conditions.

1. Introduction. This paper is concerned with quartic diophantine equations of the type

$$
\begin{equation*}
f(x, y)=f(u, v) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
f(x, y)=a x^{4}+b x^{3} y+c x^{2} y^{2}+d x y^{3}+e y^{4} \tag{1.2}
\end{equation*}
$$

is a binary quartic form in the variables x and y, and the coefficients a, b, c, d and e are integers. At present no method is known of determining all integer solutions or even a single non-trivial solution of a given quartic equation of type (1.1). A necessary and sufficient condition for the solvability of equation (1.1) has been given by Choudhry [3]. Even when this condition is satisfied we may not get a parametric solution of the given equation. The only two equations of type (1.1) for which parametric solutions have been explicitly obtained are the classical equation

$$
x^{4}+y^{4}=u^{4}+v^{4}
$$

for which several solutions are known [1], [5, p. 201], [6], and the equation

$$
x^{4}+4 y^{4}=u^{4}+4 v^{4}
$$

for which a parametric solution has been given by Choudhry [2]. Further, Segre [8, pp. 388-390] has indicated a method of obtaining

[^0]
[^0]: 2000 AMS Mathematics Subject Classification. Primary 11D25.
 Key words and phrases. Quartic diophantine equations.
 Received by the editors on April 17, 2003, and in revised form on July 30, 2003.

