INTEGRAL-GEOMETRIC FORMULAS FOR PERIMETER IN $\mathbf{S}^{2}, \mathbf{H}^{2}$ AND HILBERT PLANES

RALPH ALEXANDER, I.D. BERG AND ROBERT L. FOOTE

Dedicated to the memory of our friend and colleague Felix Albrecht.

Abstract

We develop two types of integral formulas for the perimeter of a convex body K in planar geometries. We derive Cauchy-type formulas for perimeter in planar Hilbert geometries. Specializing to \mathbf{H}^{2} we get a formula that appears to be new. In the projective model of \mathbf{H}^{2} we have $\mathcal{P}=$ $(1 / 2) \int w d \phi$. Here w is the Euclidean length of the projection of K from the ideal boundary point $R=(\cos \phi, \sin \phi)$ onto the diametric line perpendicular to the radial line to R (the image of K may contain points outside the model). We show that the standard Cauchy formula $\mathcal{P}=\int \sinh r d \omega$ in \mathbf{H}^{2} follows, where ω is a central angle perpendicular to a support line and r is the distance to the support line.

The Minkowski formula $\mathcal{P}=\int \kappa_{g} \rho^{2} d \theta$ in \mathbf{E}^{2} generalizes to $\mathcal{P}=1 /\left(4 \pi^{2}\right) \int \kappa_{g} L(\rho)^{2} d \theta+k / 2 \pi \int A(\rho) d s$ in \mathbf{H}^{2} and \mathbf{S}^{2}. Here (ρ, θ) and κ_{g} are, respectively, the polar coordinates and geodesic curvature of $\partial K, k$ is the (constant) curvature of the plane, and $L(\rho)$ and $A(\rho)$ are, respectively, the perimeter and area of the disk of radius ρ. In \mathbf{E}^{2} this is locally equivalent to the Cauchy formula $\mathcal{P}=\int r d \omega$ in the sense that the integrands are pointwise equal. In contrast, the corresponding Minkowski and Cauchy formulas are not locally equivalent in \mathbf{H}^{2} and \mathbf{S}^{2}.

1. Introduction.

1.1 Overview. There are at least two natural integral-geometric approaches relating the perimeter of a convex body K in \mathbf{E}^{2} to its other geometric properties. There is the beautiful Cauchy formula

$$
\begin{equation*}
\mathcal{P}=\frac{1}{2} \int_{0}^{2 \pi} w d \phi \tag{1.1}
\end{equation*}
$$

[^0]
[^0]: 2000 AMS Mathematics Subject Classification. Primary 53C65, Secondary 52A38, 52A10, 26B15.

 Received by the editors on June 17, 2002.

