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THE ARC LENGTH OF THE LEMNISCATE |wn+c| = 1

CHUNJIE WANG AND LIZHONG PENG

ABSTRACT. Let sn(c) be the arc length of the lemniscate
|wn + c| = 1, c ∈ [0,∞). We obtain some properties of the
function sn(c). In particular, we prove that sn(c) ≤ sn(1),
c ∈ [0,∞). We also give the sharp bound for sn(1)−2n, that
is,

4 log 2 < sn(1) − 2n ≤ 2(π − 1).

1. Introduction. For a polynomial p of degree n, {z ∈ C
∣∣ |p(z)| =

C} is a curve in the plane known as a lemniscate, where C is a
nonnegative constant. Lemniscates have a lot of interesting properties
and applications, see, e.g., [7]. In 1958 Erdös, Herzog and Piranian
proposed the following.

Conjecture A [3]. Suppose p(z) is a monic polynomial of degree n,
that is,

p(z) =
n∏

k=1

(z − αk),

where αk ∈ C, k = 1, 2, . . . , n. Write

En(p) =
{
z ∈ C

∣∣ |p(z)| = 1
}
.

Then the length |En(p)| is maximal when p(z) = zn + 1, which is of
length 2n + O(1).

This problem has been reposed by Erdös several times, see also [2].
Pommerenke obtained many important results on this problem, [9 12],
and gave the first upper estimate [12] for the length of En(p), namely
|En(p)| ≤ 74n2. In 1995 Borwein [1] proved that |En(p)| ≤ 8π en
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