ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 36, Number 1, 2006

REPRESENTATIONS AND INTERPOLATIONS OF WEIGHTED HARMONIC BERGMAN FUNCTIONS

KYESOOK NAM

ABSTRACT. On the setting of the upper half-space of the Euclidean *n*-space, we study representation theorems and interpolation theorems for weighted harmonic Bergman functions. Also, we consider the harmonic (little) Bloch spaces as limiting spaces.

1. Introduction. Let **H** denote the upper half space $\mathbf{R}^{n-1} \times \mathbf{R}_+$ where \mathbf{R}_+ denotes the set of all positive real numbers. We will write points $z \in \mathbf{H}$ as $z = (z', z_n)$ where $z' \in \mathbf{R}^{n-1}$ and $z_n > 0$.

For $\alpha > -1$ and $1 \le p < \infty$, let $b^p_{\alpha} = b^p_{\alpha}(\mathbf{H})$ denote the *weighted har*monic Bergman space consisting of all real-valued harmonic functions u on \mathbf{H} such that

$$\|u\|_{L^p_{\alpha}} := \left(\int_{\mathbf{H}} |u(z)|^p \, dV_{\alpha}(z)\right)^{1/p} < \infty$$

where $dV_{\alpha}(z) = z_{\alpha}^{\alpha}dz$ and dz is the Lebesque measure on \mathbb{R}^{n} . Then we can see easily that the space b_{α}^{p} is a Banach space. In particular, b_{α}^{2} is a Hilbert space. Hence, there is a unique Hilbert space orthogonal projection Π_{α} of L_{α}^{2} onto b_{α}^{2} which is called the weighted harmonic Bergman projection. It is known that this weighted harmonic Bergman projection can be realized as an integral operator against the weighted harmonic Bergman kernel $R_{\alpha}(z, w)$. See Section 2.

In [6], many fundamental weighted harmonic Bergman space properties have been studied. In this paper, we study the representation property of b^p_{α} -functions and the interpolation by b^p_{α} -functions. Our methods are taken from those in [4] and based on estimates of the

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 31B05, 31B10, 30D45, 30D55.

This research was supported by the Korean Research Foundation grant KRF-2000-DP0014.

Received by the editors on June 18, 2003, and in revised form on October 6, 2003.