POSITIVE INTEGERS WHOSE EULER FUNCTION IS A POWER OF THEIR KERNEL FUNCTION

J.-M. DE KONINCK, F. LUCA AND A. SANKARANARAYANAN

1. Introduction. For a positive integer n, let $\gamma(n):=\prod_{p \mid n} p$. The function $\gamma(n)$ is sometimes referred to as either the algebraic radical of n, or the squarefree kernel of n. Let $\phi(n), \sigma(n)$ and $\omega(n)$ denote the Euler function of n, the sum of the positive divisors of n and the number of distinct prime factors of n, respectively. We also write $P(n)$ for the largest prime factor of n (with the convention that $P(1)=1$), and $\mu(n)$ for the Möbius function of n.

Jean-Marie De Koninck, see [3], asked for all the positive integers n which are solutions of the equation

$$
\begin{equation*}
f(n)=\gamma(n)^{2} \tag{1}
\end{equation*}
$$

where $f \in\{\phi, \sigma\}$. With $f=\phi$, the above equation has precisely six solutions, and all these are listed in the last section of this paper. With $f=\sigma$, it is conjectured that $n=1,1782$ are the only solutions of the above equation, but we do not even know if this equation admits finitely many or infinitely many solutions n. In [4], it is shown, among other things, that every positive integer n satisfying equation (1) with $f=\sigma$ can be bounded above by a function depending on $\omega(n)$. In particular, if one puts an upper bound on the number of distinct prime factors of the positive integer n satisfying equation (1) with $f=\sigma$, then one can bound the positive integer n.
In this paper, we let k be any positive integer, and we let E_{k} be the set of positive integer solutions n for the equation

$$
\begin{equation*}
\phi(n)=\gamma(n)^{k} . \tag{2}
\end{equation*}
$$

We also set $N_{k}:=\left|E_{k}\right|$. It is easy to see that $E_{1}=\left\{1,2^{2}, 2 \cdot 3^{2}\right\}$. Moreover, for $k \geq 2$, each one of the numbers $1,2^{k+1}, 2^{k} \cdot 3^{k+1}, 2^{k-1}$.

[^0] 2004.

[^0]: Received by the editors on April 14, 2003, and in revised form on January 16,

