ON THE GOLDBACH CONJECTURE IN ARITHMETIC PROGRESSIONS

CLAUS BAUER AND WANG YONGHUI

Abstract

It is proved that for a given integer N and for all but $\ll(\log N)^{B}$ prime numbers $k \leq N^{5 / 48-\varepsilon}$ the following is true: For any positive integers $b_{i}, i \in\{1,2,3\},\left(b_{i}, k\right)=1$ that satisfy $N \equiv b_{1}+b_{2}+b_{3}(\bmod k), N$ can be written as $N=p_{1}+p_{2}+p_{3}$, where the $p_{i}, i \in\{1,2,3\}$ are prime numbers that satisfy $p_{i} \equiv b_{i}(\bmod k)$.

1. Introduction. Vinogradov $[\mathbf{1 7}]$ has proved that every sufficiently large odd positive integer can be written as the sum of three primes. This theorem has been generalized in many ways. In 1953, Ayoub [1] proved the following result: If k is a fixed positive integer, $b_{i}, i=1,2,3$, are integers with $\left(b_{i}, k\right)=1$ and $J\left(N ; k, b_{1}, b_{2}, b_{3}\right)$ is the number of solutions of the equation

$$
\left\{\begin{array}{l}
N=p_{1}+p_{2}+p_{3}, \\
p_{j} \equiv b_{j}(\bmod k),
\end{array}\right.
$$

then

$$
J\left(N ; k, b_{1}, b_{2}, b_{3}\right)=(N ; k) \frac{N^{2}}{2 \log ^{3} N}(1+o(1))
$$

where for odd integer $N \equiv b_{1}+b_{2}+b_{3}(\bmod k)$,

$$
\begin{aligned}
\sigma(N, k)= & \frac{C(k)}{k^{2}} \prod_{p \mid k} \frac{p^{3}}{(p-1)^{3}+1} \prod_{\substack{p \mid N \\
p \nmid k}} \frac{(p-1)\left((p-1)^{2}-1\right)}{(p-1)^{3}+1} \\
& \times \prod_{p>2}\left(1+\frac{1}{(p-1)^{3}}\right),
\end{aligned}
$$

[^0] 2004.

[^0]: 2000 AMS Mathematics Subject Classification. Primary 11P32, 11L07.
 The work of the second author was supported partly by Chinese NSF Tianyuan Youth Foundation (10126001) and was done while he was a visiting scholar at the Morningside Center.

 Received by the editors on January 6, 2003, and in revised form on July 22,

