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BOUNDED SOLUTIONS OF THIRD ORDER
NONLINEAR DIFFERENCE EQUATIONS

ANNA ANDRUCH-SOBI�LO AND MA�LGORZATA MIGDA

ABSTRACT. We consider the nonlinear difference equation

Δ
(
anΔ(bnΔxn)

)
= qnf(xn+2), n ∈ N,

where {an}, {bn}, {qn} are positive real sequences, f is a real
function with xf(x) > 0 for all x �= 0. We obtain sufficient
conditions for the boundedness of all nonoscillatory solutions
of the above equation. Some examples are also given.

1. Introduction. Consider the third order difference equation

(E) Δ
(
anΔ(bnΔxn)

)
= qnf(xn+2), n = 1, 2, . . .

where Δ is the forward difference operator defined by Δxn = xn+1−xn,
{an}, {bn}, {qn} are sequences of positive real numbers, f : R → R is
a real function with xf(x) > 0 for x �= 0.

The following convention is used:

k−t∑
i=k

ai := 0 for any k, t ∈ N.

By a solution of equation (E) we mean a real sequence {xn}, which
satisfies equation (E) for all sufficiently large n and is not eventually
identically zero. A solution of equation (E) is called nonoscillatory, if
it is eventually positive or eventually negative. Otherwise it is called
oscillatory. A sequence {xn} is called quickly oscillatory if and only
if xn = (−1)nzn for all n ∈ N , where {zn} is a sequence of positive
numbers or a sequence of negative numbers.

In recent years there has been an increasing interest in the study
of the qualitative behavior of solutions of difference equations. In
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