BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 36, Number 2, 2006

POWER SUBGROUPS OF SOME HECKE GROUPS

SEBAHATTIN IKIKARDES, ÖZDEN KORUOĞLU AND RECEP SAHIN

ABSTRACT. Let q > 3 be an even integer and let $H(\lambda_q)$ be the Hecke group associated to q. Let m be a positive integer and $H^m(\lambda_q)$ the power subgroup of $H(\lambda_q)$. In this work the power subgroups $H^m(\lambda_q)$ are discussed. The Reidemeister-Schreier method and the permutation method are used to obtain the abstract group structure and generators of $H^m(\lambda_q)$; their signatures are then also determined.

1. Introduction. In [4], Erich Hecke introduced the groups $H(\lambda)$ generated by two linear fractional transformations

$$x(z) = -\frac{1}{z}$$
 and $u(z) = z + \lambda$,

where λ is a fixed positive real number. Let y = xu, i.e.,

$$y(z) = -\frac{1}{z+\lambda}.$$

E. Hecke showed that $H(\lambda)$ is Fuchsian if and only if $\lambda = \lambda_q =$ $2\cos(\pi/q)$, for $q = 3, 4, 5, \ldots$, or $\lambda \ge 2$. We are going to be interested in the former case. These groups have come to be known as the *Hecke* groups, and we will denote them by $H(\lambda_q)$, for $q \geq 3$. Then the Hecke group $H(\lambda_q)$ is the discrete subgroup of PSL (2, **R**) generated by x and y, and it is isomorphic to the free product of two finite cyclic groups of orders 2 and q. $H(\lambda_q)$ has a presentation

(1.1)
$$H(\lambda_q) = \langle x, y \mid x^2 = y^q = I \rangle \cong C_2 * C_q, \quad [1].$$

Also $H(\lambda_q)$ has the signature $(0; 2, q, \infty)$, that is, all the groups $H(\lambda_q)$ are triangle groups. The first several of these groups are $H(\lambda_3) =$

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 11F06, 20H10.

Key words and phrases. Hecke group, power subgroup. Accepted by the editors on January 27, 2004.

Copyright ©2006 Rocky Mountain Mathematics Consortium