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A NOTE ON RIESZ BASES
OF EIGENVECTORS FOR A CLASS OF

NONANALYTIC OPERATOR FUNCTIONS

M. HASANOV, B. ÜNALMIŞ UZUN AND N. ÇOLAKOĞLU

ABSTRACT. Riesz basis properties for a class of self-
adjoint and continuous operator functions are studied. A new
approach based on the spectral distribution function is pre-
sented.

1. Introduction. There is a hypothesis in the spectral theory of
operator functions in the following form.

If L(α) is an operator function of the class C([a, b], S(H)) such that
L(a) � 0, L(b) � 0, for all x ∈ H \ {0}, the function (L(α)x, x) has
exactly one zero in (a, b) and π(L) = {γ} ∈ (a, b), then the eigenvectors
of L(α), corresponding to eigenvalues in (a, b) form a Riesz basis for
the Hilbert space H or they are complete in H.

Here by C([a, b], S(H)) we denote the class of self-adjoint and contin-
uous operator functions defined on the interval [a, b], and π(L) is the
set of the limit spectrum, i.e.,

π(L) = {λ ∈ (a, b) | ∃xn, ‖xn‖ = 1, xn → 0 (weakly), L(λ)xn → 0}.

The spectrum σ(L), the point spectrum or the set of eigenvalues σe(L)
of L are subsets of [a, b] defined as follows: λ ∈ σ(L) if 0 ∈ σ(L(λ)) and
λ ∈ σe(L) if 0 ∈ σe(L(λ)). A nonzero vector x from the kernel ker L(λ)
for λ ∈ σe(L) is called an eigenvector of L corresponding to λ.

This problem in the finite-dimensional case for the class C1([a, b],
S(H)) the class of self-adjoint and continuously differentiable oper-
ator functions, was solved in [1]. For analytic operator functions the
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