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REGULAR COMPONENTS OF MODULI SPACES
OF STABLE MAPS AND K-GONAL CURVES

E. BALLICO

ABSTRACT. Here we prove for certain integers g, rd and
k the existence of a generically smooth irreducible component
of the moduli space of stable maps M−

g (P1 ×Pr , (k, d)) with
the expected dimension. As a byproduct, we obtain the
existence of a generically smooth component of dimension
ρ(g, r, d) := g − (r + 1)(g + r − d) for the Brill-Noether locus
W r

d (C) of a general k-gonal curve C of genus g.

1. The statements. For any complex projective variety Y and
any class β ∈ H2(Y,Z), one considers the moduli space M−

g (Y, β) of
all stable maps f : C → Y , with C a reduced connected nodal curve
of arithmetic genus g and f∗([C]) = β (see [7] for the construction of
these moduli spaces). The expected dimension of the algebraic stack
M−

g (Y, β) is dim(Y )(1 − g) + 3g − 3 − b · ωY . For all integers g, r, d,
set ρ(g, r, d) := g − (r + 1)(g + r − d) = (r + 1)d − rg − r(r + 1) (the
so-called Brill-Noether number). As in [6] we are interested in the case
in which Y = P1 × Pr, and we look for irreducible components, V ,
of M−

g (P1 × Pr, β) which are good, i.e., such that V is generically
smooth and with the expected dimension. When Y = P1 × Pr

the class β is given by a pair (k, d) of non-negative integers and in
this case the dimension of a good component of M−

g (P1 × Pr, β) is
ρ(g, r, d) + 3g− 3 + 2k− g− 2. The main aim of this paper is the proof
of the following result.

Theorem 1.1. Fix positive integers g, r, d and k such that (g+2)/2 ≥
k ≥ r + 3 ≥ 6, ρ(g, r, d) ≥ 0, and g ≤ (r + 1)�d/r� − r − 3. Then there
exists a good component of M−

g (P1 × Pr, (k, d)).
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