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SYMBOLIC POWERS OF RADICAL IDEALS

AIHUA LI AND IRENA SWANSON

ABSTRACT. Hochster proved several criteria for the case
when for a prime ideal P in a commutative Noetherian ring
with identity, P n = P (n) for all n. We generalize the criteria
to radical ideals.

1. Introduction. In [1], Hochster established several criteria for the
case when for a prime ideal P in a Noetherian ring R, the nth power
Pn of P equals the nth symbolic power P (n) of P for every positive
integer n. He used a so-called test sequence of ideals in a polynomial
ring over R to determine whether Pn = P (n) for all n. We extend
Hochster’s criteria to radical ideals.

Here is the set-up: let R be a Noetherian domain and P an ideal
of R. Suppose that {a1, a2, . . . , am} is a generating set for P . Write
the m-tuple as p = (a1, a2, . . . , am). Let S = R[x1, x2, . . . , xm], where
x1, x2, . . . , xm are indeterminates over R.

Definition 1.1. For an ideal P = (a1, . . . , am)R of R, define
recursively ideals of S = R[x1, . . . , xm]:

J0(p) = 0

and

Jn+1(p) =
({

Σm
i=1 sixi

∣∣ si ∈ S and Σm
i=1 siai ∈ Jn(p)

})
S

for n ≥ 0. We write Jn for Jn(p) and denote J = ∪∞
n=1Jn. We call the

sequence of ideals
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