MONOTONICITY PROPERTIES AND INEQUALITIES OF FUNCTIONS RELATED TO MEANS

CHAO-PING CHEN AND FENG QI

Abstract

In this paper, monotonicity properties of functions related to means are discussed and some inequalities are established.

1. Introduction. The generalized logarithmic mean (Stolarsky mean) $L_{r}(a, b)$ of two positive numbers a, b is defined in $[\mathbf{1}, \mathbf{2}]$ for $a=b$ by $L_{r}(a, b)=a$ and for $a \neq b$ by

$$
\begin{aligned}
L_{r}(a, b) & \triangleq\left(\frac{b^{r+1}-a^{r+1}}{(r+1)(b-a)}\right)^{1 / r}, \quad r \neq-1,0 \\
L_{-1}(a, b) & =\frac{b-a}{\ln b-\ln a} \triangleq L(a, b) \\
L_{0}(a, b) & =\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{1 /(b-a)} \triangleq I(a, b)
\end{aligned}
$$

when $a \neq b, L_{r}(a, b)$ is a strictly increasing function of r. Clearly,

$$
L_{1}(a, b) \triangleq A(a, b), \quad L_{-2}(a, b) \triangleq G(a, b)
$$

where A and G are the arithmetic and geometric means, respectively.
The logarithmic mean $L(a, b)$ is generalized to the one-parameter mean in [3]:

$$
\begin{aligned}
J_{r}(a, b) & \triangleq \frac{r\left(b^{r+1}-a^{r+1}\right)}{(r+1)\left(b^{r}-a^{r}\right)}, \quad a \neq b, \quad r \neq 0,-1 \\
J_{0}(a, b) & \triangleq L(a, b) \\
J_{-1}(a, b) & \triangleq \frac{[G(a, b)]^{2}}{L(a, b)} \\
J_{r}(a, a) & \triangleq a
\end{aligned}
$$

[^0]
[^0]: AMS Mathematics Subject Classification. Primary 26A48, 26D15.
 Key words and phrases. Monotonicity, inequality, mean, ratio.
 The authors were supported in part by NNSF (\#10001016) of China SF for the Prominent Youth of Henan Province (\#0112000200), the SF of Henan Innovation Talents at Universities, China.

 Received by the editors on August 4, 2003, and in revised form on November 7, 2003.

