ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 36, Number 4, 2006

REAL RANK OF C^* -TENSOR PRODUCTS WITH THE C^* -ALGEBRA OF BOUNDED OPERATORS

TAKAHIRO SUDO

ABSTRACT. We show under an assumption on the real rank zero that the real rank of the minimal C^* -tensor products of unital exact C^* -algebras with the C^* -algebra of bounded operators is less than or equal to one. Moreover, several consequences of this result are obtained.

1. Introduction. The real rank for C^* -algebras was introduced by Brown and Pedersen [3]. This notion has been quite important in the theory of C^* -algebras such as the classification theory of C^* -algebras, cf. [9] and its reference. On the other hand, some basic formulas for the real rank has been obtained by [1, 3, 6, 10, 11, 15], etc. However, it is hard to compute the real rank of C^* -algebras in some general situations so that some desirable formulas for the real rank has not been proven yet. For example, the real rank formula for C^* -tensor products has not been obtained completely.

In this paper we obtain a real rank formula for the minimal C^* -tensor products of unital exact C^* -algebras with the C^* -algebra of bounded operators under an assumption on the real rank zero. The main idea of the proof is a modification (to the real rank case) of Rieffel's proof for the stable rank formula [16, Theorem 6.4] for C^* -tensor products by the C^* -algebra of compact operators. However, the process of the real rank case is more complicated than the stable rank case as shown in Theorem 1. As a consequence, several results of the real rank of C^* -tensor products are obtained by using the results of Kodaka-Osaka [10, 11, 15], Zhang [24] and Lin [13]. Also, the real rank formula in Theorem 1 would be useful in other situations in the future. See [5, 17–22] for some related works.

Notation. Let $\mathbf{B}(H)$ be the C^* -algebra of all bounded operators on a separable infinite-dimensional Hilbert space H, and let \mathbf{K} be the C^* -

Copyright ©2006 Rocky Mountain Mathematics Consortium

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 46L05, 46L80, 19K56. Key words and phrases. Real rank, C^* -tensor products, bounded operators. Received by the editors on June 3, 2002.