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THE HURWITZ ZETA FUNCTION
AS A CONVERGENT SERIES

ROMAN DWILEWICZ AND JÁN MINÁČ

ABSTRACT. New series for the Hurwitz zeta function
which converge on the whole plane, except s = 1, are devel-
oped. This is applied to obtain a remarkably simple evaluation
of some special values of the function.

1. Introduction. Classically the Riemann zeta function, or more
generally, the Hurwitz zeta function, is defined on a half plane using
a series and then it is analytically extended, with respect to s, to the
whole plane except for a simple pole at s = 1 with residue 1,

ζ(s, x) =
∞∑

n=0

1
(n + x)s

for �s > 1 and 0 < x ≤ 1,

however in many calculations x can be taken any positive number.
The Riemann zeta function is obtained from the Hurwitz function by
setting x = 1. In this paper we define the Hurwitz zeta function by a
series which converges on the whole plane except for s = 1. In fact we
define a family of series parameterized by certain easily constructible
sequences of natural numbers {gn}∞n=0. Our constructions and proofs
are elementary and they require only the basic properties of Bernoulli
numbers (for basic properties of Bernoulli numbers and L-functions we
refer the reader to [3] and [23]) and complex analysis of one variable,
see, e.g., [46]. The new series leads to a very simple and natural
evaluation of L-functions at negative integers. One example of our
series is the following:
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