THE HURWITZ ZETA FUNCTION AS A CONVERGENT SERIES

ROMAN DWILEWICZ AND JÁN MINÁČ

Abstract

New series for the Hurwitz zeta function which converge on the whole plane, except $s=1$, are developed. This is applied to obtain a remarkably simple evaluation of some special values of the function.

1. Introduction. Classically the Riemann zeta function, or more generally, the Hurwitz zeta function, is defined on a half plane using a series and then it is analytically extended, with respect to s, to the whole plane except for a simple pole at $s=1$ with residue 1 ,

$$
\zeta(s, x)=\sum_{n=0}^{\infty} \frac{1}{(n+x)^{s}} \quad \text { for } \quad \Re s>1 \quad \text { and } \quad 0<x \leq 1
$$

however in many calculations x can be taken any positive number. The Riemann zeta function is obtained from the Hurwitz function by setting $x=1$. In this paper we define the Hurwitz zeta function by a series which converges on the whole plane except for $s=1$. In fact we define a family of series parameterized by certain easily constructible sequences of natural numbers $\left\{g_{n}\right\}_{n=0}^{\infty}$. Our constructions and proofs are elementary and they require only the basic properties of Bernoulli numbers (for basic properties of Bernoulli numbers and L-functions we refer the reader to $[\mathbf{3}]$ and $[\mathbf{2 3}]$) and complex analysis of one variable, see, e.g., [46]. The new series leads to a very simple and natural evaluation of L-functions at negative integers. One example of our series is the following:

[^0]
[^0]: 2000 AMS Mathematics Subject Classification. Primary 30B40, 11M06, Secondary $11 \mathrm{M} 35,30 \mathrm{~B} 50$.

 Key words and phrases. Hurwitz zeta function, Bernoulli polynomials, Bernoulli numbers.

 This work was partially supported by the Univ. of Missouri Research Board grant (2003) and Polish Committee for Scientific Research Grant KBN 2 P03A 04415.

 The research of the second author was supported by NSERC grant R0370A01 and by a Distinguished Research Professorship at the Univ. of Western Ontario.

 Received by the editors on Sept. 11, 2003, and in revised form on Dec. 16, 2004.

