PHELPS' UNIQUENESS PROPERTY FOR $K(X, Y)$ IN $L(X, Y)$

MÄRT PÕLDVERE

Abstract

We study pairs of Banach spaces X and Y with X^{*} or Y^{*} having a metric compact approximation of the identity (MCAI) with adjoint operators such that the subspace $K(X, Y)$ of compact operators from X to Y has the Phelps' uniqueness property U in the space of all continuous linear operators $L(X, Y)$, i.e., every functional $f \in K(X, Y)^{*}$ has a unique norm-preserving extension to $L(X, Y)$.

Our main results are: (1) $K(X, X)$ has property U in $L(X, X)$ whenever X has an MCAI and $K(E, E)$ has property U in $L(E, E)$ for every closed separable subspace E of X having an MCAI; (2) if a Banach space Y has an MCAI, then $K(X, Y)$ has property U in $L(X, Y)$ for all Banach spaces X if and only if $K\left(l_{1}, Y\right)$ has property U in $L\left(l_{1}, Y\right)$. We also show that if a separable dual space X^{*} has an MCAI with adjoint operators, then property U for $K(X, X)$ in $L(X, X)$ is determined by the properties of the extreme points of the unit ball of $L(X, X)^{*}$.

0. Introduction. Let X be a (real or complex) Banach space, and let Z be a closed subspace of X. By the Hahn-Banach theorem, every continuous linear functional $g \in Z^{*}$ has a norm-preserving extension $f \in X^{*}$. In general, such an extension is highly non-unique. Following Phelps [16], we say that Z has property U in X if every $g \in Z^{*}$ has a unique norm-preserving extension $f \in X^{*}$.

According to the terminology in $[\mathbf{2}]$, a closed subspace Z of a Banach space X is said to be an ideal in X if there exists a contractive projection P on X^{*} with ker $P=Z^{\perp}$. It is straightforward to verify that, if Z is an ideal in X, then, for every $f \in X^{*}, P f \in X^{*}$ is a normpreserving extension of the restriction $\left.f\right|_{Z} \in Z^{*}$. Therefore, $\operatorname{ran} P$ is canonically isometric to Z^{*}. In the sequel, we shall use the (generally non-Hausdorff) weak topology $\sigma(X, \operatorname{ran} P)$. Ideals with property U have been studied e.g. in $[\mathbf{1 0}, \mathbf{1 1}, \mathbf{1 4}, \mathbf{1 5}]$.

[^0]
[^0]: 2000 AMS Mathematics Subject Classification. Primary 46B28, 46B20.
 Research partially supported by Estonian Science Foundation Grant 5704.
 Received by the editors on June 4, 2003.

