THE $\left\{K_{i}(z)\right\}_{i=1}^{\infty}$ FUNCTIONS

ALEKSANDAR PETOJEVIĆ

$$
\begin{aligned}
& \text { ABSTRACT. In this paper we define and study the func- } \\
& \text { tions } \\
& K_{i}(z)=\frac{{ }_{1} M_{0}(1 ; 1, z+i-1)-{ }_{1} M_{0}(1 ; 1, i-1)}{{ }_{1} M_{-1}(1 ; 1, i)}, \quad i \in \mathbf{N}
\end{aligned}
$$

where function ${ }_{v} M_{m}(s ; a, z)$ is defined in [9]. We give the recurrence relations, asymptotic and other properties. Also, we give the exponential generating function and representation of $K_{i}(n)$.

1. Introduction. In 1971, Professor Kurepa, see [5, 6], defined the left factorial $!n$ as the total number of nodes in a finite tree consisting of n levels with the k th level containing k ! nodes, $k=0,1,2, \ldots, n-1$. That is, Kurepa defined $!0=0$ and for $n \in \mathbf{N}$

$$
!n=\sum_{k=0}^{n-1} k!
$$

and extended it to the complex half-plane $\Re(z)>0$ as

$$
\begin{equation*}
!z=\int_{0}^{+\infty} \frac{t^{z}-1}{t-1} e^{-t} d t \tag{1}
\end{equation*}
$$

This function can be extended analytically to the whole complex plane by

$$
\begin{equation*}
!z=!(z+1)-\Gamma(z+1) \tag{2}
\end{equation*}
$$

[^0]
[^0]: 2000 AMS Mathematics Subject Classification. Primary 11B34, Secondary 11B50.

 Key words and phrases. $K_{i}(z)$ function, ${ }_{v} M_{m}(s ; a, z)$ function, generating function.

 This work was supported in part by the Serbian Ministry of Science, Technology and Development under Grant \# 2002: Applied Orthogonal Systems, Constructive Approximation and Numerical Methods.

 Received by the editors on Oct. 28, 2003, and in revised form on Jan. 25, 2004.

