ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 36, Number 5, 2006

THE $\{K_i(z)\}_{i=1}^{\infty}$ FUNCTIONS

ALEKSANDAR PETOJEVIĆ

ABSTRACT. In this paper we define and study the functions

$$K_i(z) = \frac{{}_{1}M_0(1; 1, z+i-1) - {}_{1}M_0(1; 1, i-1)}{{}_{1}M_{-1}(1; 1, i)}, \quad i \in \mathbf{N},$$

where function $_{v}M_{m}(s; a, z)$ is defined in [9]. We give the recurrence relations, asymptotic and other properties. Also, we give the exponential generating function and representation of $K_i(n)$.

1. Introduction. In 1971, Professor Kurepa, see [5, 6], defined the *left factorial* !n as the total number of nodes in a finite tree consisting of n levels with the kth level containing k! nodes, $k = 0, 1, 2, \ldots, n-1$. That is, Kurepa defined !0 = 0 and for $n \in \mathbf{N}$

$$!n = \sum_{k=0}^{n-1} k!$$

and extended it to the complex half-plane $\Re(z) > 0$ as

(1)
$$!z = \int_0^{+\infty} \frac{t^z - 1}{t - 1} e^{-t} dt.$$

This function can be extended analytically to the whole complex plane by

(2)
$$!z = !(z+1) - \Gamma(z+1),$$

Copyright ©2006 Rocky Mountain Mathematics Consortium

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 11B34, Secondary 11B50.

Key words and phrases. $K_i(z)$ function, $vM_m(s; a, z)$ function, generating

function. This work was supported in part by the Serbian Ministry of Science, Technology and Development under Grant # 2002: Applied Orthogonal Systems, Constructive Approximation and Numerical Methods. Received by the editors on Oct. 28, 2003, and in revised form on Jan. 25, 2004.