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CHARACTERIZABILITY OF PSU(p + 1,q)
BY ITS ORDER COMPONENT(S)

AMIR KHOSRAVI AND BEHROOZ KHOSRAVI

ABSTRACT. Order components of a finite group were
introduced by Chen [5]. It was proved that some finite groups
are characterizable by their order components.

In this paper we prove that PSU(p + 1, q) is uniquely
determined by its order component(s) if and only if (q + 1) |
(p + 1). A main consequence of our results is the validity of
Thompson’s conjecture for the groups PSU(p + 1, q) where
(q + 1)|(p + 1).

1. Introduction. Let π(n) be the set of prime divisors of n, where
n is a positive integer. If G is a finite group, then π(G) is defined to be
π(|G|). By using the orders of elements in G, we construct the prime
graph of G as follows.

The prime graph Γ(G) of a group G is the graph whose vertex set is
π(G), and two distinct primes p and q are joined by an edge (we write
p ∼ q) if and only if G contains an element of order pq. Let t(G) be
the number of connected components of Γ(G) and let π1, π2, . . . , πt(G)

be the connected components of Γ(G). If 2 ∈ π(G), then we always
suppose 2 ∈ π1.

Now |G| can be expressed as a product of coprime positive integers
mi, i = 1, 2, . . . , t(G) where π(mi) = πi. These integers are called
the order components of G. The set of order components of G will
be denoted by OC(G). Also we call m2, . . . , mt(G) the odd order
components of G. The order components of non-abelian simple groups
having at least three prime graph components are obtained by Chen
[9, Tables 1 3]. Similarly the order components of non-abelian simple
groups with two order components can be obtained by using the tables
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