CHARACTERIZABILITY OF PSU(p $+\mathbf{1}, \mathbf{q})$ BY ITS ORDER COMPONENT(S)

AMIR KHOSRAVI AND BEHROOZ KHOSRAVI

Abstract

Order components of a finite group were introduced by Chen [5]. It was proved that some finite groups are characterizable by their order components.

In this paper we prove that $\operatorname{PSU}(p+1, q)$ is uniquely determined by its order component(s) if and only if $(q+1)$ | $(p+1)$. A main consequence of our results is the validity of Thompson's conjecture for the groups $\operatorname{PSU}(p+1, q)$ where $(q+1) \mid(p+1)$.

1. Introduction. Let $\pi(n)$ be the set of prime divisors of n, where n is a positive integer. If G is a finite group, then $\pi(G)$ is defined to be $\pi(|G|)$. By using the orders of elements in G, we construct the prime graph of G as follows.

The prime graph $\Gamma(G)$ of a group G is the graph whose vertex set is $\pi(G)$, and two distinct primes p and q are joined by an edge (we write $p \sim q$) if and only if G contains an element of order $p q$. Let $t(G)$ be the number of connected components of $\Gamma(G)$ and let $\pi_{1}, \pi_{2}, \ldots, \pi_{t(G)}$ be the connected components of $\Gamma(G)$. If $2 \in \pi(G)$, then we always suppose $2 \in \pi_{1}$.

Now $|G|$ can be expressed as a product of coprime positive integers $m_{i}, i=1,2, \ldots, t(G)$ where $\pi\left(m_{i}\right)=\pi_{i}$. These integers are called the order components of G. The set of order components of G will be denoted by $O C(G)$. Also we call $m_{2}, \ldots, m_{t(G)}$ the odd order components of G. The order components of non-abelian simple groups having at least three prime graph components are obtained by Chen [9, Tables 1-3]. Similarly the order components of non-abelian simple groups with two order components can be obtained by using the tables

[^0]
[^0]: 2000 AMS Mathematics Subject Classification. Primary 20D05, 20D60 and 20 D 08.

 Key words and phrases. Order component, characterization, prime graph, simple group, unitary group.

 The second author was supported in part by a grant from IPM (No. 82200031).
 Received by the editors on Oct. 10, 2003, and in revised form on Sept. 14, 2004.

