CONGRUENCES AND RATIONAL EXPONENTIAL SUMS WITH THE EULER FUNCTION

WILLIAM D. BANKS AND IGOR E. SHPARLINSKI

Abstract

We give upper bounds for the number of solutions to congruences with the Euler function $\varphi(n)$ modulo an integer $q \geq 2$. We also give nontrivial bounds for rational exponential sums with $\varphi(n) / q$.

1. Introduction. Let $\varphi(n)$ denote the Euler function:

$$
\varphi(n)=\#\{1 \leq a \leq n \mid \operatorname{gcd}(a, n)=1\}
$$

For any integer $q \geq 2$, let $\mathbf{e}_{q}(z)$ denote the exponential function $\exp (2 \pi i z / q)$, which is defined for all $z \in \mathbf{R}$.

In this paper, we give upper bounds for rational exponential sums of the form

$$
S_{a}(x, q)=\sum_{n \leq x} \mathbf{e}_{q}(a \varphi(n))
$$

where $\operatorname{gcd}(a, q)=1$, and x is sufficiently large. Our results are nontrivial for a wide range of values for the parameter q. In the special case where $q=p$ is a prime number, however, stronger results have been obtained in [1].

One of the crucial ingredients of $[\mathbf{1}]$ is an upper bound on the number solutions of a congruence with the Euler function. To be more precise, let $T(x, q)$ denote the number of positive integers $n \leq x$ such that $\varphi(n) \equiv 0(\bmod q)$. The results of $[\mathbf{1}]$ are based on the bound

$$
\begin{equation*}
T(x, p)=O\left(\frac{x \log \log x}{p}\right) \tag{1}
\end{equation*}
$$

which is a partial case of [4, Theorem 3.5].
Here we obtain an upper bound on $T(x, q)$, albeit weaker than (1), and we follow the approach of $[\mathbf{1}]$ to estimate the sums $S_{a}(x, q)$.

[^0]
[^0]: Received by the editors on December 19, 2003, and in revised form on March 22, 2004.

