LOCALLY EUCLIDEAN METRICS ON S^{2} IN WHICH SOME OPEN BALLS ARE NOT CONNECTED

YOUNG DEUK KIM

Abstract

Let $S_{r}^{2} \subset \mathbf{R}^{3}$ be the 2 -sphere with center O and radius r. For all $0<s \leq 1$, we define a locally Euclidean metric d^{s} on S_{r}^{2} which is equivalent to the Euclidean metric. These metrics are invariant under Euclidean isometries, and if $0<s<1$ then some open balls in $\left(S_{r}^{2}, d^{s}\right)$ are not connected.

1. Introduction. Let $S_{r}^{2} \subset \mathbf{R}^{3}$ be the 2-sphere with center $O=(0,0,0)$ and radius $r>0$. We write d_{E} to denote the Euclidean metric on S_{r}^{2}. A metric d on the set S_{r}^{2} is called locally Euclidean if, for all $P \in S_{r}^{2}$, there exists $t>0$ such that
$d(Q, R)=d_{E}(Q, R) \quad$ for all $\quad Q, R \in B_{t}(P)=\left\{S \in S_{r}^{2} \mid d(P, S)<t\right\}$.
As usual, two metrics d_{1} and d_{2} on the set S_{r}^{2} are called equivalent if the identity mapping of $\left(S_{r}^{2}, d_{1}\right)$ onto $\left(S_{r}^{2}, d_{2}\right)$ is a homeomorphism. Notice that the following trivial metric d_{T} is locally Euclidean but not equivalent to d_{E}.

$$
d_{T}(P, Q)= \begin{cases}0 & \text { if } P=Q \\ 1 & \text { if } P \neq Q\end{cases}
$$

In this paper we define a locally Euclidean metric d^{s}, which is equivalent to d_{E} and invariant under Euclidean isometries. Notice that the Euclidean metric d_{E} is trivially locally Euclidean. In fact, the metric d^{1} will turn out to be the Euclidean metric d_{E}. Every open ball in $\left(S_{r}^{2}, d_{E}\right)$ is connected. However, if $0<s<1$, then some open balls in $\left(S_{r}^{2}, d^{s}\right)$ are not connected.

Suppose that $0<s \leq 1$. Let $-P$ denote the antipodal point of $P \in S_{r}^{2}$. Let

$$
\alpha=\sin ^{-1}\left(\frac{\sqrt{2-s^{2}}-s}{2}\right), \quad \text { where } \quad 0 \leq \alpha<\pi / 4 .
$$

[^0]
[^0]: Received by the editors on September 17, 2003.

