QUADRATIC RESIDUES OF CERTAIN TYPES

ALEXANDRU GICA

ABSTRACT. The main purpose of the paper is to show that if p is a prime different from 2,3,5,7,13,37, then there exists a prime number q smaller than $p,q\equiv 1\pmod 4$, which is a quadratic residue modulo p. Also, it is shown that if p is a prime number which is not 2,3,5,7,17, then there exists a prime number $q\equiv 3\pmod 4$, q< p, which is a quadratic residue modulo p.

1. Introduction. In [2] it is shown that any $n \in \mathbb{N}$, n > 3, could be written as

$$n = a + b$$
,

a,b being positive integers such that $\Omega(ab)$ is an even number. If $m \in \mathbb{N}$, $m \geq 2$, has the standard decomposition $m = p_1^{a_1} \cdot p_2^{a_2} \cdots p_r^{a_r}$ then the *length* of m is $\Omega(m) = \sum_{i=1}^n a_i$. We put $\Omega(1) = 0$. In connection with the above quoted result, the following open problem naturally arises.

Open problem. What numbers n can be written as $n = a^2 + b$, where a, b are positive integers, the length of b being an even number?

Trying to solve this problem was the starting point for the main result of this paper.

Theorem 1. Let p be a prime number $p \neq 2, 3, 5, 7, 13, 37$. There exists a prime number q such that $q < p, q \equiv 1 \pmod{4}$ and (q/p) = 1.

We will prove also a similar result which has, however, an elementary proof:

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 11A15, 11E25, 11R29. $Key\ words$ and phrases. Quadratic residue, length, numerus idoneus. Received by the editors on March 22, 2004, and in revised form on April 9, 2004.