QUADRATIC RESIDUES OF CERTAIN TYPES

ALEXANDRU GICA

Abstract

The main purpose of the paper is to show that if p is a prime different from $2,3,5,7,13,37$, then there exists a prime number q smaller than $p, q \equiv 1(\bmod 4)$, which is a quadratic residue modulo p. Also, it is shown that if p is a prime number which is not $2,3,5,7,17$, then there exists a prime number $q \equiv 3(\bmod 4), q<p$, which is a quadratic residue modulo p.

1. Introduction. In [2] it is shown that any $n \in \mathbf{N}, n>3$, could be written as

$$
n=a+b
$$

a, b being positive integers such that $\Omega(a b)$ is an even number. If $m \in \mathbf{N}, m \geq 2$, has the standard decomposition $m=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$ then the length of m is $\Omega(m)=\sum_{i=1}^{n} a_{i}$. We put $\Omega(1)=0$. In connection with the above quoted result, the following open problem naturally arises.

Open problem. What numbers n can be written as $n=a^{2}+b$, where a, b are positive integers, the length of b being an even number?

Trying to solve this problem was the starting point for the main result of this paper.

Theorem 1. Let p be a prime number $p \neq 2,3,5,7,13,37$. There exists a prime number q such that $q<p, q \equiv 1(\bmod 4)$ and $(q / p)=1$.

We will prove also a similar result which has, however, an elementary proof:

[^0]
[^0]: 2000 AMS Mathematics Subject Classification. Primary 11A15, 11E25, 11R29.
 Key words and phrases. Quadratic residue, length, numerus idoneus.
 Received by the editors on March 22, 2004, and in revised form on April 9, 2004.

