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QUADRATIC RESIDUES OF CERTAIN TYPES

ALEXANDRU GICA

ABSTRACT. The main purpose of the paper is to show
that if p is a prime different from 2, 3, 5, 7, 13, 37, then there
exists a prime number q smaller than p, q ≡ 1 (mod 4), which
is a quadratic residue modulo p. Also, it is shown that if p
is a prime number which is not 2, 3, 5, 7, 17, then there exists
a prime number q ≡ 3 (mod 4), q < p, which is a quadratic
residue modulo p.

1. Introduction. In [2] it is shown that any n ∈ N, n > 3, could
be written as

n = a + b,

a, b being positive integers such that Ω(ab) is an even number. If
m ∈ N, m ≥ 2, has the standard decomposition m = pa1

1 · pa2
2 · · · par

r

then the length of m is Ω(m) =
∑n

i=1 ai. We put Ω(1) = 0. In
connection with the above quoted result, the following open problem
naturally arises.

Open problem. What numbers n can be written as n = a2 + b,
where a, b are positive integers, the length of b being an even number?

Trying to solve this problem was the starting point for the main result
of this paper.

Theorem 1. Let p be a prime number p �= 2, 3, 5, 7, 13, 37. There
exists a prime number q such that q < p, q ≡ 1 (mod 4) and (q/p) = 1.

We will prove also a similar result which has, however, an elementary
proof:
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