THE SQUARE OF A MAP, SYMBOLIC DYNAMICS AND THE CONLEY INDEX

JIM WISEMAN

Abstract

We consider a map f from a locally compact metric space to itself, and use the discrete Conley index to study the difference between the local dynamics of f and f^{2}. In particular, we present a method, based on work by Mischaikow, Szymczak, et al., for detecting positive entropy symbolic dynamics by measuring the difference between Conley indices for f and f^{2}.

1. Introduction. Let $f: X \rightarrow X$ be a continuous map of a locally compact metric space and N a compact subset of X. Any point that stays in N under all forward and backward iterates of f certainly does so for f^{2} as well, but the converse is not true; thus, the maximal invariant set in N under f^{2} contains the corresponding set under f, see Section 2 for exact definitions. In this paper we use the discrete Conley index to study the extent to which the two sets differ.

In particular, we present a method, based on work by Mischaikow, Szymczak, et al. [2, 16], for detecting symbolic dynamics by measuring the difference between Conley indices for f and f^{2}. We see that the nonnilpotence of certain products of the induced maps on homology corresponds to the existence of positive entropy renewal systems. A consequence is that if an invariant set satisfies certain decomposability assumptions and a homology map on the Conley index for f has a nonzero eigenvalue whose square is not an eigenvalue for the corresponding map for f^{2}, then f has positive topological entropy.

Sections 2 and 3 contain background information, Section 2 on the Conley index and Section 3 on renewal systems. In Section 4 we discuss some basic results on the differences between the local dynamics for f and f^{2}. Finally, in Section 5 we discuss the method for detecting symbolic dynamics.

[^0]
[^0]: 2000 AMS Mathematics Subject Classification. Primary 37B30, Secondary 37B10, 54H20.

 Key words and phrases. Conley index, symbolic dynamics, renewal system.
 Research partially supported by the Swarthmore College Research Fund.
 Received by the editors on Dec. 15, 2003, and in revised form on April 2, 2004.

