ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 37, Number 1, 2007

AN EIGENVALUE PROBLEM FOR QUASILINEAR SYSTEMS

JOHNNY HENDERSON AND HAIYAN WANG

ABSTRACT. The paper deals with the existence of positive solutions for the *n*-dimensional quasilinear system $(\mathbf{\Phi}(\mathbf{u}'))' + \lambda \mathbf{h}(t)\mathbf{f}(\mathbf{u}) = 0, 0 < t < 1$, with the boundary condition $\mathbf{u}(0) = \mathbf{u}(1) = 0$. The vector-valued function $\mathbf{\Phi}$ is defined by $\mathbf{\Phi}(\mathbf{u}) = (\varphi(u_1), \ldots, \varphi(u_n))$, where $\mathbf{u} = (u_1, \ldots, u_n)$, and φ covers the two important cases $\varphi(\mathbf{u}) = u$ and $\varphi(u) = |u|^{p-2}u, p > 1$, $\mathbf{h}(t) = \mathrm{diag} [h_1(t), \ldots, h_n(t)]$ and $\mathbf{f}(\mathbf{u}) = (f^1(\mathbf{u}), \ldots, f^n(\mathbf{u}))$. Assume that f^i and h_i are nonnegative continuous. For $\mathbf{u} = (u_1, \ldots, u_n)$, let $f_0^i = \lim_{\|\mathbf{u}\| \to 0} f^i(\mathbf{u})/\varphi(\|\mathbf{u}\|)$, $f_\infty^i = \lim_{\|\mathbf{u}\| \to \infty} f^i(\mathbf{u})/\varphi(\|\mathbf{u}\|)$, $i = 1, \ldots, n, \mathbf{f}_0 = \max\{f_0^1, \ldots, f_0^n\}$ and $\mathbf{f}_\infty = \max\{f_\infty^1, \ldots, f_\infty^n\}$. We prove that the boundary value problem has a positive solution, for certain finite intervals of λ , if one of \mathbf{f}_0 and \mathbf{f}_∞ is large enough and the other one is small enough. Our methods employ fixed point theorems in a cone.

1. Introduction. In this paper we consider the eigenvalue problem for the system

(1.1)
$$(\mathbf{\Phi}(\mathbf{u}'))' + \lambda \mathbf{h}(t) \mathbf{f}(\mathbf{u}) = 0, \quad 0 < t < 1,$$

with one of the following three sets of the boundary conditions,

(1.2a)
$$\mathbf{u}(0) = \mathbf{u}(1) = 0,$$

(1.2b)
$$\mathbf{u}'(0) = \mathbf{u}(1) = 0,$$

(1.2c)
$$\mathbf{u}(0) = \mathbf{u}'(1) = 0,$$

where $\mathbf{u} = (u_1, \ldots, u_n)$, $\mathbf{\Phi}(\mathbf{u}) = (\varphi(u_1), \ldots, \varphi(u_n))$, $\mathbf{h}(t) = \text{diag} \times [h_1(t), \ldots, h_n(t)]$ and $\mathbf{f}(\mathbf{u}) = (f^1(u_1, \ldots, u_n), \ldots, f^n(u_1, \ldots, u_n))$. We understand that \mathbf{u} , $\mathbf{\Phi}$ and $\mathbf{f}(\mathbf{u})$ are (column) *n*-dimensional vector-valued functions. Equation (1.1) means that

(1.3)
$$\begin{cases} (\varphi(u_1'))' + \lambda h_1(t) f^1(u_1, \dots, u_n) = 0, & 0 < t < 1 \\ \vdots \\ (\varphi(u_n'))' + \lambda h_n(t) f^n(u_1, \dots, u_n) = 0, & 0 < t < 1 \end{cases}$$

Received by the editors on July 20, 2003, and in revised form on November 11, 2004.

Copyright ©2007 Rocky Mountain Mathematics Consortium