BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 37, Number 1, 2007

ON LOCALLY UNIFORMLY A-PSEUDOCONVEX ALGEBRAS

M. ABEL, A. EL KINANI AND M. OUDADESS

ABSTRACT. Conditions when a unital locally uniformly A-pseudoconvex algebra (E, τ) is (or when there exists a topology τ' on E such that (E, τ') is) a locally p-convex algebra for some $p \in (0, 1]$, are found. It is shown that on every unital advertibly complete locally uniformly A-pseudoconvex algebra E there exists a submultiplicative semi-norm |.| such that (E, |.|) is a Q-algebra.

1. Introduction. 1. Let (E, τ) be a locally pseudoconvex algebra over \mathbf{C} with separately continuous multiplication (in short lpca) the topology τ of which has been given by a family $\{|.|_i : i \in I\}$ of p_i -homogeneous semi-norms $|.|_i$, where $0 < p_i \leq 1$ for each $i \in I$. In particular, when $p = \inf p_i > 0$, this lpca (E, τ) is a *locally p-convex* algebra (in short l*p*-ca) that is, an lpca in which every $p_i = p$.

If for any $x \in E$ there is a positive number M(x) such that¹

(1)
$$\max(|xy|_i, |yx|_i) \leq M(x)^{p_i} |y|_i$$

for each $y \in E$ and $i \in I$ (here M(x) depends only on x, but not on i), then an lpca (E, τ) is a locally uniformly A-pseudoconvex algebra (in short luA-pca) and if every semi-norm $|.|_i$ in the family $\{|.|_i : i \in I\}$ is *submultiplicative*, that is,

$$|xy|_i \leqslant |x|_i |y|_i$$

for each $x, y \in E$, then an lpca (A, τ) is a *locally multiplicatively* pseudoconvex (or locally m-pseudoconvex) algebra (in short lm-pca).

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 46H05, Secondary 46H20.

Key words and phrases. Locally pseudoconvex algebra, locally m-pseudoconvex algebra, locally uniformly A-pseudoconvex algebra, Q-algebra, advertibly complete algebra, bornology, von Neumann bornology, bounded structure, boundedness. Research is in part supported by Estonian Science Foundation grant 6205.

Received by the editors on March 13, 2004.

Copyright ©2007 Rocky Mountain Mathematics Consortium