DERIVATIVE RELATIONSHIPS BETWEEN VOLUME AND SURFACE AREA OF COMPACT REGIONS IN R ${ }^{d}$

JEAN-LUC MARICHAL AND MICHAEL DORFF

Abstract

We explore the idea that the derivative of the volume, V, of a region in \mathbf{R}^{d} with respect to r equals its surface area, A, where $r=d(V / A)$. We show that the families of regions for which this formula for r is valid, which we call homogeneous families, include all the families of similar regions. We determine equivalent conditions for a family to be homogeneous, provide examples of homogeneous families made up of non-similar regions and offer a geometric interpretation of r in a few cases.

1. Introduction. It is well known that there exists a remarkable derivative relationship between the area A and the perimeter P of a circle, namely

$$
\frac{\mathrm{d} A}{\mathrm{~d} r}=P
$$

where the variable r represents the radius of the circle. It is natural to wonder whether such a derivative relationship remains valid for other familiar shapes. At first glance, though, it does not even hold for the square when r represents the side length. However, it holds when r represents half of the side length, that is, the radius of the inscribed circle.

In a similar manner, the derivative of the volume function of a sphere is equal to the surface area, that is,

$$
\frac{\mathrm{d} V}{\mathrm{~d} r}=A
$$

and this relationship still holds for cubes if r represents the radius of the inscribed sphere.

[^0]
[^0]: AMS Mathematics Subject Classification. Primary 51M25, 52A38, Secondary 26A24, 52B60.

 Received by the editors on February 3, 2003, and in revised form on November 12, 2004.

