TILING THE UNIT SQUARE WITH 5 RATIONAL TRIANGLES

GARIKAI CAMPBELL, JAMES BRADY AND ARVIND NAIR

Abstract

There are 14 distinct ways to tile the unit square (modulo the symmetries of the square) with 5 triangles such that the 5 -tiling is not a subdivision of a tiling using fewer triangles. We demonstrate how to construct infinitely many rational tilings in each of the 14 configurations. This stands in contrast to a long standing inability to find rational 4-tilings of the unit square in the so-called χ-configuration.

1. Introduction. Recall that a rational triangle is a triangle whose sides have rational length and consider the following:

Question 1. For each $n \in \mathbf{N}$, in what ways can the unit square be tiled with n rational triangles?

It is clear that the unit square cannot be divided into two rational triangles and, in [7], Guy similarly disposes of the case $n=3$. Guy goes on to prove that there are essentially four distinct ways to tile the square with four triangles and along with Bremner $[\mathbf{2}, \mathbf{3}]$ proved that at least three of them admit rational tilings. The goal of this paper is to solve the $n=5$ case. Before moving on however, it is worth noting that the remaining $n=4$ case is the subject of problem D19 in [8] and can be articulated as:

Question 2. Is there a point on the interior of the unit square that is a rational distance to each of the four corners?

More formally, and in keeping with the language established by Guy, we say that a proper n-tiling, or simply an n-tiling, is a set of n triangles

[^0]
[^0]: 2000 AMS Mathematics Subject Classification. Primary 11G05.
 Key words and phrases. Rational triangles, elliptic curves.
 This work was completed with the support of a Swarthmore College Undergraduate Research Grant.

 Received by the editors on August 17, 2004, and in revised form on Nov. 9, 2004.

