ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 32, Number 3, Fall 2002

SUFFICIENT CONDITIONS FOR OSCILLATION OF LINEAR SECOND ORDER MATRIX DIFFERENTIAL SYSTEMS

N. PARHI AND P. PRAHARAJ

ABSTRACT. Sufficient conditions in terms of *trace* are obtained for the oscillation of all nontrivial prepared solutions of second order self-adjoint differential matrix systems

$$\left(P(t)Y'\right)' + Q(t)Y = 0, \quad t \ge \sigma \ge 0,$$

where P and Q are $n \times n$ real continuous symmetric matrix functions on $[\sigma, \infty)$ with P(t) positive definite. Our results generalize earlier results on oscillation of scalar second order equation

$$(p(t)y')' + q(t)y = 0, \quad t \ge \sigma \ge 0,$$

where $p, q \in C([\sigma, \infty), (-\infty, \infty))$ with p(t) > 0, and are applicable to Euler's second order matrix equations.

1. Introduction. Many oscillation criteria for self-adjoint second order linear differential equation

(1)
$$(p(t)y')' + q(t)y = 0$$

are known, where $p \in C([\sigma, \infty), (0, \infty))$, $q \in C([\sigma, \infty), (-\infty, \infty))$ and $\sigma \ge 0$. If $p(t) \equiv 1$, then (1) takes the form

(2)
$$y'' + q(t)y = 0.$$

A solution of (1) is said to be oscillatory if it has arbitrarily large zeros; otherwise, it is called nonoscillatory. Equation (1) is oscillatory if all its solutions are oscillatory. We use the following condition often:

(C₁) Let $D = \{(t,s) : t \ge s \ge \sigma\}$ and $D_0 = \{(t,s) : t > s \ge \sigma\}$. Let $h \in C(D, [0, \infty))$ satisfy the following conditions:

¹⁹⁹¹ AMS Mathematics Subject Classification. 34C10.

Key words and phrases. Oscillation, nonoscillation, matrix differential system, second order, self-adjoint. Received by the editors on January 25, 2000, and in revised form on September

Received by the editors on January 25, 2000, and in revised form on September 5, 2000.