ROCKY MOUNTAIN

JOURNAL OF MATHEMATICS
Volume 32, Number 2, Summer 2002

LEONARD PAIRS FROM 24 POINTS OF VIEW

PAUL TERWILLIGER

ABSTRACT. Let K denote a field and let V denote a vector space over \mathbf{K} with finite positive dimension. We consider a pair of linear transformations $A: V \rightarrow V$ and $A^{*}: V \rightarrow V$ that satisfy both conditions below:
(i) There exists a basis for V with respect to which the matrix representing A is diagonal and the matrix representing A^{*} is irreducible tridiagonal.
(ii) There exists a basis for V with respect to which the matrix representing A^{*} is diagonal and the matrix representing A is irreducible tridiagonal.
We call such a pair a Leonard pair on V. Referring to the above Leonard pair, we investigate 24 bases for V on which the action of A and A^{*} take an attractive form. Our bases are described as follows. Let Ω denote the set consisting of four symbols $0, d, 0^{*}, d^{*}$. We identify the symmetric group S_{4} with the set of all linear orderings of Ω. For each element g of S_{4}, we define an (ordered) basis for V, which we denote by $[g]$. The 24 resulting bases are related as follows. For all elements $w x y z$ in S_{4}, the transition matrix from the basis $[w x y z]$ to the basis [xwyz], (respectively [wyxz]), is diagonal, (respectively lower triangular). The basis $[w x z y]$ is the basis $[w x y z]$ in inverted order. The transformations A and A^{*} act on the 24 bases as follows: For all $g \in S_{4}$, let A^{g}, (respectively $A^{* g}$), denote the matrix representing A, (respectively A^{*}), with respect to [g]. To describe A^{g} and $A^{* g}$, we refer to $0^{*}, d^{*}$ as the starred elements of Ω. Writing $g=w x y z$, if neither of y, z are starred then A^{g} is diagonal and $A^{* g}$ is irreducible tridiagonal. If y is starred but z is not, then A^{g} is lower bidiagonal and $A^{* g}$ is upper bidiagonal. If z is starred but y not, then A^{g} is upper bidiagonal and $A^{* g}$ is lower bidiagonal. If both of y, z are starred, then A^{g} is irreducible tridiagonal and $A^{* g}$ is diagonal.
We define a symmetric binary relation on S_{4} called adjacency. An element $w x y z$ of S_{4} is by definition adjacent to each of $x w y z, w y x z, w x z y$ and no other elements of S_{4}. For all ordered pairs of adjacent elements g, h in S_{4}, we find the entries of the transition matrix from the basis $[g]$ to the basis

[^0]
[^0]: Key words and phrases. q-Racah polynomial, Leonard pair, tridiagonal pair, Askey scheme, Askey-Wilson polynomials.

 2000 AMS Mathematics subject classification. 05E30, 05E35, 33C45, 33D45.
 Received by the editors on November 1, 2000, and in revised form on June 27, 2001.

