A NEW A_{n} EXTENSION OF RAMANUJAN'S ${ }_{1} \psi_{1}$ SUMMATION WITH APPLICATIONS TO MULTILATERAL A_{n} SERIES

STEPHEN C. MILNE AND MICHAEL SCHLOSSER

Abstract

In this article we derive some identities for multilateral basic hypergeometric series associated to the root system A_{n}. First, we apply Ismail's [15] argument to an A_{n} q-binomial theorem of Milne [25, Theorem 5.42] and derive a new A_{n} generalization of Ramanujan's ${ }_{1} \psi_{1}$ summation theorem. From this new $A_{n}{ }_{1} \psi_{1}$ summation and from an A_{n} ${ }_{1} \psi_{1}$ summation of Gustafson [9], we deduce two lemmas for deriving simple A_{n} generalizations of bilateral basic hypergeometric series identities. These lemmas are closely related to the Macdonald identities for A_{n}. As samples for possible applications of these lemmas, we provide several A_{n} extensions of Bailey's ${ }_{2} \psi_{2}$ transformations, and several A_{n} extensions of a particular ${ }_{2} \psi_{2}$ summation.

1. Introduction. The theory of basic hypergeometric series (cf. [8]), consists of many known summation and transformation formulas. The most important of these is probably the q-binomial theorem, a summation first discovered by Cauchy [6]. Surprisingly, the q-binomial theorem admits a bilateral generalization, the ${ }_{1} \psi_{1}$ summation theorem, first discovered by Ramanujan [11]. Other important identities for basic hypergeometric series include the q-Gauß summation and Heine's ${ }_{2} \phi_{1}$ transformations. These and many other basic hypergeometric series identities conspicuously appear in combinatorics and in related areas, such as number theory, statistics, physics and representation theory of Lie algebras, see Andrews [1].
[^0]
[^0]: 2000 AMS Mathematics subject classification. Primary 33D15, Secondary 05A19, 33D67.

 Keywords and phrases. Bilateral basic hypergeometric series, q-series, multiple basic hypergeometric series associated to the root system $A_{n}, U(n+1)$ series, q binomial theorem, Ramanujan's ${ }_{1} \psi_{1}$ summation, Macdonald identities, Bailey's ${ }_{2} \psi_{2}$ transformations, $2 \psi_{2}$ summation.

 The first author was partially supported by National Security Agency grant MDA904-99-1-0003.

 Received by the editors on October 13, 2000.

